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A rigorous description of the equilibrium thermodynamic properties of an infinite
system of interacting v-dimensional quantum anharmonic oscillators is given. The
oscillators are indexed by the elements of a countable set . C RY, possibly irregular;
the anharmonic potentials vary from site to site and the interaction has infinite range. The
description is based on the representation of the Gibbs states in terms of path measures—
the so called Euclidean Gibbs measures. It is proven that: (a) the set of such measures G*
is non-void and compact; (b) every . € G obeys an exponential integrability estimate,
the same for the whole set G'; (c) every u € G has a Lebowitz-Presutti type support;
(d) G' is a singleton at high temperatures. The case of attractive interaction and v = 1
is studied in more detail. We prove that: (a) |G!| > 1 at low temperatures; (b) |G!| = 1
due to quantum effects and at a nonzero external field. Thereby, a qualitative theory of
phase transitions and quantum effects, which interprets most important experimental
data known for the corresponding physical objects, is developed.
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1. INTRODUCTION

The quantum anharmonic oscillator is a mathematical model of a localized quan-
tum particle moving in a potential field with sufficient growth at infinity and
possibly multiple minima. Infinite systems of interacting quantum anharmonic
oscillators possess interesting properties connected with the possibility of order-
ing caused by the interaction as well as with quantum stabilization competing the
ordering. Most of the systems of this kind are related with solids, such as ionic
crystals containing localized light particles oscillating in the field created by heavy
ionic complexes, or quantum crystals consisting entirely of such particles. For in-
stance, a potential field with multiple minima is seen by a helium atom located at
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the center of the crystal cell in bee helium. % The same situation exists in other
quantum crystals, He, H, and to some extent Ne. An example of the ionic crystal
with localized quantum particles moving in a double-well potential field is a KDP-
type ferroelectric with hydrogen bounds, in which such particles are protons or
deuterons performing one-dimensional oscillations along the bounds. In this case
the particle carries electric charge and its displacement produces dipole moment
that should be reflected in the choice of the interparticle interaction. It is believed
that structural phase transitions in such ferroelectrics are triggered by the ordering
of protons. 18385 Another relevant physical object of this kind is a system of light
atoms, like Li, doped into ionic crystals, like KCI. The particles in this system are
not necessarily regularly distributed. At last, quantum anharmonic oscillators are
used as parts of the models describing interaction of vibrating quantum particles
with a radiation (photon) field “*%® or strong electron-electron correlations caused
by the interaction of electrons with vibrating ions responsible for such phenomena
as superconductivity, charge density waves, etc, see Refs. 32, 33. Thus, infinite
systems of interacting quantum anharmonic oscillators are quite important models
and their rigorous description is still a challenging mathematical task.
The model we consider has the following heuristic Hamiltonian

1
H==23 Ju(qeqe)+ Y He (1.1)

e 4

in which the interaction term is of dipole-dipole type. The sums run through a
countable set . C R?, the displacement ¢, is a v-dimensional vector. The interac-
tion intensities are supposed to be such that

Jgg =0, Jar = JM (S] R, £, A el. (12)

By (-, -) and | - | we denote the Euclidean scalar product and norm in R". The
Hamiltonian

def 1 a
He=H{" +Vilge) = ——Ipel* + Slacl? + Velge), @ >0, (13)

describes an isolated anharmonic oscillator of mass m and momentum p,. Its part
HI™ corresponds to a v-dimensional quantum harmonic oscillator of rigidity a.
The anharmonic potentials V;, which may vary from site to site, are supposed to
obey certain uniform bounds responsible for the stability of the whole system.
We do not assume that the interaction possesses special properties like translation
invariance or has finite range. Therefore, our model describes also systems with
long-range interactions and with spacial irregularities, e.g., caused by impurities
or random components.

A complete description of the equilibrium thermodynamic properties of
infinite-particle systems may be made by constructing their Gibbs states. Usually,
Gibbs states of quantum models are defined as positive normalized functionals on
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algebras of observables, satisfying the Kubo-Martin-Schwinger (KMS) condition,
see Ref. 23, which reflects the consistency between the dynamic and thermody-
namic properties of the system proper to the thermodynamic equilibrium. For a
subsystem located in a finite A C LL and thus described by the local Hamiltonian
H)j , the KMS condition is formulated by means of the unitary operators exp(it Hy ),
t € R. To describe the dynamics of the whole model one has to take the infinite
volume limits of exp(it Hy ), which certainly exist for finite rank H,, e.g., for
spin models. However for our model, such limits do not exist and therefore the
KMS condition for the whole system cannot be formulated. This produces a fun-
damental problem and actually there is no canonical way to define Gibbs states,
and hence to give a complete description of the thermodynamic properties of
models like (1.1). The aim of this work is to bridge this gap with the help of path
integrals.

In Ref. 1, an approach employing the fact that the local Hamiltonians H,
generate stochastic processes has been initiated. In this approach, the description
of the local Gibbs states, based on the properties of the semi-group exp(—t Hy),
T > 0, is translated into a “probabilistic language,” that opens the possibility to
apply here corresponding concepts and techniques. In this language, our model is
the system of infinite dimensional “spins” wy, £ € I, being continuous paths wy :
[0, B] = RY, w;(0) = wy(p), called also temperature loops. Each spin is described
by the path measure of the 8-periodic Ornstein-Uhlenbeck process corresponding
to Hg““ multiplied by a density obtained from the anharmonic potential with the
help of the Feynman-Kac formula. Afterwards, finite subsystems are associated
with conditional probability measures, which by the Dobrushin-Lanford-Ruelle
(DLR) equation determine the set of Gibbs measures G'. This approach is called
Euclidean due to its conceptual analogy with the Euclidean quantum field theory.
Its further development was conducted in the papers.?~8:11-14.16.48-50,52,54,55,66,67)
Among the achievements one has to mention the settlement in Refs. 3, 5, 6 of a
long standing problem of the influence of quantum effects on structural phase
transitions in quantum anharmonic crystals, which first was discussed in Ref. 77,
see also Refs. 67, 86, 87.

In the present article, we give a complete description of the set G* for the model
(1.1) and hence essentially finalize the development of the Euclidean approach for
such models. Our results fall into two groups of theorems. The first group describes
the general case where Jy¢ and V satisfy natural stability conditions only. We state
that: G is non-void and compact (Theorem 3.1); the elements of G* obey certain
exponential moment estimates (Theorem 3.2) and have a Lebowitz-Presutti type
support (Theorem 3.3); G' is a singleton at high temperatures (Theorem 3.4).
The second group of theorems describes the case of v = 1 and Jyp > 0. Here we
employ the FKG order and show that the set G* has maximal and minimal elements
(Theorem 3.8). If the model is translation invariant, we prove that the limiting
pressure exists and is the same in all states (Theorem 3.10). Then under natural
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additional conditions on ¥, we show (Theorem 3.12) that the model undergoes
a phase transition (for d > 3) and, on the other hand, G' is a singleton at all
temperatures if a quantum stabilization condition is satisfied (Theorem 3.13).
Finally, we describe a class of anharmonic potentials ¥, for which G is a singleton
at a non-zero external field (Theorem 3.14). Here we use a version of the Lee-
Yang theorem, ®? adapted to path measures. All these results are novel both for
the quantum model and its classical analogs.

The paper is organized as follows. In Sec. 2 we describe the model in detail
(Subsec. 2.1) and present the basic elements of the Euclidean approach (Subsec. 2.2
and 2.3). Afterwards, we introduce tempered configurations, a local Gibbs spec-
ification, and tempered Euclidean Gibbs measures of our model. In Sec. 3 we
give the results in the form of the theorems described above. Comments, which
in particular relate these results with those known in the literature, conclude the
section. The remaining part of the article is dedicated to the proof of the theorems
and is quite technical. We begin it by studying in detail the properties of the local
Gibbs specification.

2. EUCLIDEAN GIBBS MEASURES
2.1. The Model

The infinite system of quantum oscillators we consider is described by the
formal Hamiltonian (1.1), (1.3), defined on the set . ¢ R, d € N. This set is
equipped with the Euclidean distance |¢ — ¢'| inherited from R?. We suppose that

1

3255% Atle—ep™ = @1
for every € > 0. This is a kind of uniform regularity, which in particular means
that big amounts of the elements of L cannot concentrate in the subsets of R?
of small volume. If L is a crystalline lattice the model is called the quantum
anharmonic crystal. For simplicity, we shall always assume that . = Z¢ if L is a
lattice.

Subsets of L are denoted by A. As usual, |A| stands for the cardinality of
A and A€ — for its complement L \ A. We write A € L if A is non-void and
finite. By £ we denote a cofinal (ordered by inclusion and exhausting the lattice)
sequence of finite subsets of L. Limits taken along such £ are denoted by lim,.
We write lim, _»y, if the limit is taken along an unspecified sequence of this type.
If we say that something holds for all £, we mean that it holds for all £ € L;
expressions like ), mean ) _,; . By (-, -) and | - |, we denote the Euclidean scalar
product and norm in all spaces like R”, R?; N, will stand for the set of nonnegative
integers.
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The Hamiltonian (1.1) has no direct mathematical meaning and is “repre-
sented” by the local Hamiltonians H,, A € L, which are

1
Hy = Z [H™ + Vilgo)] - 7 Z Je(q1, qe)

teA LUeh
1
= 5= PP+ Wa@n). qn = @oeen. (22)
m teA
In the latter formula the first term is the kinetic energy; the potential energy is
1
Watan)=—5 Y Julaao)+ Y [@Dlal + V@] @3)
LU teA

The anharmonic potentials 7, and the interaction intensities Jy, are subject to the
following

Assumption2.1. AllV, : R — Rare continuous and such that Vy;(0) = 0, there
existr > 1, Ay > 0, By € R, and a continuous function V : R" — R, V' (0) =0,
such that for all £ and x € R",

Aylx|” + By < Vil(x) < V(x). (2.4)
We also assume that
Jo Esup Y |Jee| < 0. 2.5)

[
The lower bound in (2.4) is responsible for confining each particle in the vicinity
of its equilibrium position. The upper bound is to guarantee that the oscillations
of the particles located far from the origin are not suppressed. An example of V,
to bear in mind is the polynomial

V) =Y b 1P —(hx). b €R, b >0, r=2.  (26)

s=1

in which 72 € R” is an external field and the coefficients bﬁs) vary in certain
intervals, such that both estimates (2.4) hold. Under Assumption 2.1 H, is a self-
adjoint lower bounded operator in L?(R"!"!) having discrete spectrum. It generates
a positivity preserving semigroup such that

trace[exp(—7 Hp)] < oo, forallt > 0. 2.7
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Definition 2.2. The model is ferroelectric?® if J;» > 0 forall ¢, £'. The interaction
has finite range if there exists R > 0 such that J;» = 0 whenever |£ — £'| > R.
The model is translation invariant if IL is a lattice, V, = V for all £, and the matrix
(Jee )LxL 18 invariant under translations of IL. The model is rotation invariant if for
every orthogonal transformation U € O(v) and every £, V,(Ux) = Vy(x).

If V, = 0 for all £, one gets a system of interacting quantum harmonic oscillators,
a quantum harmonic crystal if L is a lattice. It is stable if Jy < a, see Remark 3.5.
below.

2.2. Quantum Gibbs States in the Euclidean Approach

Here we outline the basic elements of the Euclidean approach we apply in
this article. More details can be found in Refs. 4, 7.
For A € L, the Hamiltonian H, defined by (2.2), acts in the physical Hilbert

space H &f L?(R''A1). In view of (2.7), one can introduce the local Gibbs state

def trace(Ade PHn)

Cr 2 A 0a(4) = “trace(e—PPn) (2.8)

which is a positive normalized functional on the algebra €, of all bounded linear
operators (observables) on H . The mappings

Crd A ad(4) & e gemith |t eR, (2.9)

constitute the group of time automorphisms which describes the dynamics of
the system in A. The state o, satisfies the KMS (thermal equilibrium) condition
relative to the dynamics a’*, see Definition 1.1 in Ref. 44. Multiplication operators
by bounded continuous functions act as

(FY)(x) = F(x)- ¥(x), ¥ € Ha, FeCR™)
One can prove, see Ref. 55, that the linear span of the products
an(F1) - ap(Fy), (2.10)
with all possible choices of n e N, #1,...,t, € Rand Fy,..., F, € Cb(R"W), is

o-weakly dense in €, . Therefore, as a o-weakly continuous functional (see page
65 of the first volume of Ref. 23), the state (2.8) is fully determined by its values
on (2.10), that is, by the Green functions
def
G pti, . t)) = oalap (F)--ap(F]. (2.11)

.....

3 Usually such a model is called ferromagnetic; we adopt the above terminology in view of the
ferroelectric interpretation mentioned in Introduction.
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They can be considered as restrictions of functions G4 (z15 ..., zn), analytic
. . FiyoFy
in the domain

Dy ={(1...2) €C" [0 < 3(z1) < Nz2) < - < z) < B}, (2.12)

and continuous on its closure Z_?Z C C". For every n € N, the “imaginary time”
subset

(@1 iz0) € DY [ REz1) = - = R(z,) = 0)

is an inner set of uniqueness for functions analytic in Dy (see pages 101 and 352
of Ref. 77). Therefore, the Green functions (2.11), and hence the states (2.8), are
completely determined by the Matsubara functions

def
F,,(T]’ sy r}’l) =

.....

= trace[ Fle” @ pro=(m—mr . o=(Teni =t HA] strace[e PT]  (2.13)

.....

def . .
taken at ordered arguments 0 <t} <--- <71, <711+ 8 = Tpt1, with all possible

choices of n € Nand Fi, ..., F, € Cp(R"*!). Their extensions to [0, 8]" are
A A
FF] ..... F,,(Tl’ e Tn) = FFJ(l) ..... Fon) (ta(l)’ tec Ta("))’
where o is the permutation of {1, 2, ..., n} such that 7,(1) < 7o) < -+ < To@).
One can show that for every 6 € [0, 8],
MR p(@m+0,... m+0)=Tp  p(t,....T), (2.14)

where addition is modulo S. This periodicity along with the analyticity of the
Green functions is equivalent to the KMS property of the state (2.8).

The central element of the Euclidean approach is the representation of the
Matsubara functions (2.13) corresponding to Fi, ..., F, € Cy(R"*) in the form
of

FIF\I,...,F,,(Tls e Th) = /Q Fi(wa(t1)) ... Fa(wa(th))pa(dwy), (2.15)

where (1, is a certain probability measure on the space €2, which we construct
in the subsequent part of this section. This measure is called a local Euclidean
Gibbs measure. By standard arguments, it is uniquely determined by the integrals
the representation (2.15) establishes a one-to-one correspondence between the
local Gibbs states o and local Euclidean Gibbs measures 4 .

Thermodynamic properties of the model (1.1) are described by the Gibbs
states corresponding to the whole set L. Such states should be defined on the C*-
algebra of quasi-local observables €, being the norm-completion of the algebra
of local observables U, <, &4 . Here each €, is considered as a subalgebra of €,
for any A’ containing A. The dynamics of the whole system is to be defined by
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the limits A 7 IL of the time automorphisms (2.9), which would allow one to
define the Gibbs states on € as KMS states. This “algebraic” way can be realized
for models described by bounded local Hamiltonians H,, e.g., quantum spin
models, see Sec. 6.2 of Ref. 23. For the model considered here, such limiting
automorphisms do not exist and hence there is no canonical way to define Gibbs
states of the whole infinite system. Therefore, the Euclidean approach based on the
one-to-one correspondence between the local states and measures arising from the
representation (2.15) seems to be the only way of developing a mathematical theory
of the equilibrium thermodynamic properties of such models. For some versions of
quantum crystals, a possibility of constructing the limiting states ¢ = lima ~1. oA
in terms of the limiting path measures i = limy -, s was discussed in Refs. 15,
66, 67. The set of Euclidean Gibbs measures G' we construct and study in this
article certainly includes all the limiting points of this type. Furthermore, there
exist axiomatic methods, see Refs. 20, 35, analogous to the Osterwalder-Schrader
reconstruction theory, ®7® by means of which KMS states are constructed on
certain von Neumann algebras from a complete set of Matsubara functions. In our
case such a set consists of the functions

Fﬁ,...,Fn(ﬁv--~»Tn)=/QFl(w(rl))-~-Fn(w(rn))u(dw), ned, (2.16)

corresponding to all local multiplication operators by bounded continuous func-
tions F1, ..., F,. Therefore, the theory of Euclidean Gibbs measures presented
in this article can be further developed towards constructing such algebras and
states, which we leave as a task for the future.

2.3. Path Spaces and Local Euclidean Gibbs Measures

The local Euclidean Gibbs measures are defined on the spaces of continuous
paths. These are continuous functions defined on the interval [0, 8], taking equal
values at the endpoints (temperature loops). Here ! = T’ > 0 is absolute tem-
perature. One can consider the loops as functions on the circle Sg = [0, 8] being
a compact Riemannian manifold with Lebesgue measure dr and distance

T —7'lp € minfjr —1'|; B— |t — 7'}, 7.7 €S, 2.17)

As single-spin spaces we use the standard Banach spaces

Cp & C(Ss >R, €5 E OS> R), oe(01),
of all continuous and Holder-continuous functions wy : Sg — R", equipped re-
spectively with the supremum norm |wy|c, and with the Holder norm
|lwe(T) — we(T)]

weleg = loele, + sup o2 (2.18)
T,7'e8g, T#T' |T —T |ﬁ
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Along with them we use the real Hilbert space L3 = L?(S — RY, dr); its inner
product and norm are denoted by (-, .)L% and| - |L% .By B(Cp), B(L%) we denote the
corresponding Borel o -algebras. Then one defines dense continuous embeddings
Cf — Cp— Lé, that by the Kuratowski theorem, page 499 of Ref. 59, yields

Cp e B(Ly) and B(Cp)=B(L3)NCp. (2.19)

The space of Hélder-continuous functions g is not separable, however, as a subset
of Cg or Lé, it is measurable (page 278 of Ref. 74). Given A C L, we set

QA = {op = (We)een | w¢ € Cp}, Q= QL = {w = (w¢)eeL | 0 € Cp}.
(2.20)
These spaces are equipped with the product topology and with the Borel o-
algebras B(2,). Thereby, each Q4 is a Polish space; its elements are called
configurations in A. For A C A’, the decomposition wy' = wp X wana defines
an embedding Q, < Q' by identifying wy € Q4 with wa X 0pnp € Q4. By
P(2,5) and P(£2) we denote the sets of all probability measures on (2,5, B(€24))
and (2, B(2)).
A v-dimensional quantum harmonic oscillator of mass m > 0 and rigidity
a > 0 is described by the Hamiltonian, c.f., (1.3),

2
1 <& 9 a
)£ i —— - —lxel?, 2.21
¥4 ijz_;(axz])) +2|)C[| ( )

acting in the complex Hilbert space L2(IR"). The operator semigroup exp(—t H}™),
T € [0, B], defines a Gaussian B-periodic Markov process — the periodic Ornstein-
Uhlenbeck velocity process, see Ref. 45. In quantum statistical mechanics it first
appeared in R. Hoegh-Krohn’s paper. ! The canonical realization of this process
on (Cg, B(Cp)) is described by the path measure which one introduces as follows.
In leg, we define the self-adjoint (Laplace-Beltrami type) operator

d2
A= (—m@ + a) I, (2.22)
where I is the identity operator in R”. Its spectrum consists of the eigenvalues
Ao =mQrk/BY +a, kel (2.23)

Thereby, the inverse A~ is of trace class and the Fourier transform

1
/2 exp[z<¢,v>L;]x(du>=exp{—E(A-1¢,¢)L;}, pell (224

Ly
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defines a Gaussian measure x on (L2, B(Lé)). Employing the eigenvalues (2.23)
one can show (by Kolmogorov’s lemma, page 43 of Ref. 80) that

x(Cg) =1, forallo € (0,1/2). (2.25)

Then x(Cg) =1 and by (2.19) we redefine x as a probability measure on
(Cp, B(Cg)). An account of the properties of x may be found in Ref. 4. One
of them, which plays a special role in our construction, follows directly from
Fernique’s theorem (see Theorem 1.3.24 in Ref. 26).

Proposition 2.3. For every o € (0, 1/2), there exists A, > 0 such that
f exp ()\(,|u|zcg) x(dv) < co. (2.26)
Ly

The measure y is the local Euclidean Gibbs measure for a single harmonic
oscillator. The measure n, € P(24) which corresponds to the system of inter-
acting anharmonic oscillators located in A € L is associated with a stationary
B-periodic Markov process defined as follows. The marginal distributions of w A
are given by the integral kernels of the operators exp(—t Hp), T € [0, B]. This
means that

trace[ Fle™ (™™ pye= (=@ o=t ] trace[e #H0] (2.27)
- / Filwa(m)- Fu(oa(z)ia(don).
Qp

forall Fi,...,F, e L°R""), neNandt,...,7, € Sg,such that 7y < -+ <
T, < B, t,41 = 71 + B. And vice verse, the representation (2.27) uniquely, up to
equivalence, defines H, (see Ref. 44). By means of the Feynman-Kac formula the
measure j, is obtained as a Gibbs modification

pua(dwy) = exp [—Ia(wa)] xa(dwp)/Zn, (2.28)

of the “free measure”
xa(don) = [T x(da). (2:29)
e
Here
1 B
=3 3 Juelon oo+ /0 Viotyde  (230)
LleA LeA

is the energy functional describing the system of interacting paths wy, £ € A,
whereas

Zn = /Q exp [—a(@r)] xa(dwn), (2.31)
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is the partition function. As mentioned above, @, is the local Gibbs measure,
where local means corresponding toa A € L.

2.4. Tempered Configurations

The next step is to construct the equilibrium states of the whole infinite system
(1.1). We are going to do this in the DLR approach, which is standard for classical
(non-quantum) statistical mechanics, see Refs. 36, 73. In this approach, the Gibbs
measures are constructed with the help of their local conditional distributions
wa(dw|€), A € L. These latter are defined by means of the energy functionals
IA(-|€) describing the interaction with a configuration £ € Q fixed outside of A.
In accordance with (2.2) it is

IN@I&) = In(@r) = Y Jwlor, §)3, weR, (2.32)
LeA, U'eA”

where [, is given by (2.30). Recall that w = w, X w,c; hence,
In(@]&) = In(@a X 0pc]0p X Enc). (2.33)

Clearly, the second term in (2.32) makes sense for all £ € Q only if the interaction
has finite range. Otherwise, one has to restrict £ to a subset of €2, naturally defined
by the condition

VeeL: Y |l (@ &)zl < oo, (2.34)
~

that can be rewritten in terms of growth restrictions imposed on {|&;| 13 }eewL, deter-
mined by the decay of Jy (c.f.,, (2.5)). Configurations obeying such restrictions
are called tempered. In one or another way tempered configurations always appear
in the theory of system of unbounded spins, see Refs. 17, 24, 62, 69. To impose
the restrictions we use special mappings, which define the scale of growth of
{1&¢] 13 }eeL. Such mappings, called weights, are introduced by the following

Definition 2.4. Weights are the symmetric maps w, : L. x L. — (0, +00), in-
dexed by
ael=(a,a), 0<a<a=-+oo, (2.35)

which satisfy the conditions:
(a) forany o € 7T and €, wy (¢, £) = 1;

(b) forany ¢ € 7 and ¢y, €5, ¢3,
we(£1, £2) - we (b, €3) < we(€y, £3) (triangle inequality), (2.36)
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(¢c) forany o, @’ € Z, such that @ < o/, and arbitrary ¢, £/,

W (€, £) < we(L, £), lim  we(l, £)/we(l, £) = 0. (2.37)

|€—2'|—+00
The concrete choice of {w, }4c7 depends on the decay of Jy,, which thus will be
subject to the following

Assumption 2.5. Forallo € T,

sup » "log(1+ |€ — £']) - wa(£, £) < 00 (2.38)
4 o

Jo B sup ) Jeel - [wa(€ )] < oo, (2.39)
4 o

Given § > 0, which is a parameter of the theory, there exists a € L, such that

Jy — Jo < 8. (2.40)

The choice of §, based on the parameters of the model, will be done later.
One observes that the conditions (2.38) and (2.39) are competitive. One can easily
find examples of Jy¢ obeying (2.5), for which (2.38) and (2.39) cannot be satisfied
simultaneously for any choice of the weights.

Let us give some typical examples. Suppose that

supZ |Jee'] - exp (€ — €']) < oo, for a certain o > 0. (2.41)
¢

The supremum of such « (possibly infinite) is denoted by . Then we set
IT=(0,a), we(t,t)=exp(—alt—1]). (2.42)
If the condition (2.41) does not hold for any positive «, we assume that

sup Y " 1Jee| - (1+ 1€ — €)™ < o0, (2.43)
4 o

for a certain « > 1. Then « is set to be the supremum of « obeying (2.43) and
IT=0a), wdt,0)=(1+elt—e])", (2.44)

where the parameter ¢ > 0 will be chosen for (2.40) to be satisfied.
Given u = (ug)eer, € RV, g, and « € Z, we set

llpw,y = Y ltelwa(o, ), |utlpequ,y = sup {lue|wa(lo. £},
4
4
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and introduce the Banach spaces

1P(wg) = {u € R | [ulpp, <00}, p=1,+o0. (2.45)

Remark 2.6. By (2.37), for o < o, the embedding /' (wy) < I'(w,) is com-
pact. By (2.39), for every « € Z, the operator u +— Ju, defined as (Ju), =
> o Jewuy, is bounded in both spaces I”(wy), p = 1, +00. Its norm does not
exceed ja.

For @ € Z, we introduce

1/2
Q=1lweQ ’ loll, = [Zmﬁ%wa(@o,o} <00}, (2.46)
¢

and endow this set with the metric

lwe — wylc,

BT Bl (2.47)
1+ |wg — )lc,

pa(®, &) = lo— oo + Y 271
¢
which turns it into a Polish space.

Remark 2.7. The topology of each of the spaces /”(wy), €2, is independent of
the particular choice of €. This follows from the properties of the weights w,
assumed in Definition 2.4.

The set of tempered configurations is defined to be

Q= ﬂ Q. (2.48)

ael

Equipped with the projective limit topology ' becomes a Polish space as well.
For any a € Z, we have continuous dense embeddings Q' < Q, < €. Then by
the Kuratowski theorem it follows that ©,, Q' € B(R2) and the Borel o -algebras
of all these Polish spaces coincide with the ones induced on them by 5(£2). Now
we are at a position to complete the definition of the function (2.32).

Lemma 2.8. For every « € Z and A €L, the map Qy X Q4 3 (w, &) —
Iz (w)&) is continuous. Furthermore, for every ball By(R) = {® € 24 | pu(0, ) <
R}, R > 0, it follows that

in IA(w]|é) > —o0, su Iz (w < +o0. 2.49
wetr Bag, A (@) L5 @) (2.49)
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Proof: Asthe functions V; : R¥ — R are continuous, the map (w, &) > Ix(wya)
is continuous and bounded on the balls B,(R). Furthermore,

> Joo(we, §0)p3| < > el lwelzz - 18elr2

LeA, U'eA LeA, UeAc
=D Il [wa(0, 017
leA
1/2 /
X 3 1ol [wa(0, €)/wa(0, €))7 - 1013 [wa(0, €)1
lele
< D ol 2 [wa(0, 12 Y7 | Jeerl - wal€, €017 - 180 |3 [wa (0, €)1
LeA U'eAe
< JullolallElla Y [wa(0, 017", (2.50)
LeA

where we used the triangle inequality (2.36). This yields the continuity stated and
the upper bound in (2.49). To prove the lower bound we employ the super-quadratic
growth of V; assumed in (2.4). Then for any » > 0 and @ € Z, one finds C > 0
such that for any w € Q and § € Qf,

1
In@|) = ByBIAI+ Avp'™ Y Sl = 5 3 Jewler o0)y

teA NN
2
— D Jwlon ko) = —CIA+x ) o7
LeA, U'elAe LeA
— JallE13 D wal0, ©). 2.51)
teA
To get the latter estimate we used the Minkowski inequality. O

Now for A € L and & € Q, we introduce the partition function (c.f., (2.33))
Z0® = [ expl-In(on x 0xc16)] £ (o) @52)
Q4
An immediate corollary of the estimates (2.26) and (2.51) is the following

Proposition 2.9. For every A € L, the function Q' 3 & — Zx(§) € (0, +00) is
continuous. Moreover, for any R > 0,

inf Z >0, sup Z < 00. 2.53
nf Z,(6) b Zn(®) (2.53)
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2.5. Local Specification and Euclidean Gibbs Measures
We recall that the standard sources on the DLR approach are the books. 3673

The local Gibbs specification is the family {7 } s, of measure kernels
B(2) x 23 (B,§) = ma(B|§) € [0, 1]

which we define as follows. For § € Q, A € L, and B € B(2), we set

TA(BlE) = exp [—Ia(wa x 04cE)]Tp(wa X Epc)xa(dwn), (2.54)

b
ZA(€) Ja,

where [ stands for the indicator of B. We also set
A1) =0, for £ € Q\ Q. (2.55)

To simplify notations we write 7y, = . From these definitions one readily derives
a consistency property

/QNA(BIw)NAf(deS) =my(BIE), ACA, (2.56)

which holds for all B € B(2) and & € Q. Furthermore, by (2.51) it follows that
forany & € Q2,0 € (0,1/2),and x > 0,

fQ exp {Z (ool + x|we|i§)}m(dw|s) <oco,  (257)

LeA

where A, is the same as in Proposition 2.3.

By Cy(,) (respectively, Cp(R2")) we denote the Banach spaces of all
bounded continuous functions f : Q, — R (respectively, f : Q' — R) equipped
with the supremum norm. For every « € Z, one has a natural embedding
Cb(R2) = Cp(2).

Lemma 2.10. (Feller Property) Foreverya € Z, A € L, and any f € Cy(£2y),
the function
Qo 3 & > wA(f16)

= ZAl(g) o, Jn x Endexpl=la@n x Oncl)] xa(den). (2.58)

belongs to Cy(S2,). The linear operator [+ mwa(f|-) is a contraction on Cp(S2y).

Proof: By Lemma 2.8 and Proposition 2.9 the integrand

Gh(@alg) & flwn x Exc)exp[—Ia(@a x 0pcl€)]/ZA(E)
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is continuous in both variables. Moreover, by (2.49) and (2.53) the map
Qu>& > sup |G(ald)l

wAES'ZA

is bounded on every ball B, (R). This allows one to apply Lebesgue’s dominated
convergence theorem and obtain the continuity stated. Obviously,

sup | (f1€)] < sup [ f(§)]. (2.59)
sy §eS

O
Note that by (2.54), for&§ € Q',a € Z, and [ € Cp(Ry),

mA(f18) = fo(w)JTA(deE)- (2.60)

Recall that the particular cases of our model were specified by Definition 2.2.. For
B € B(2)and U € O(v), we set

Ua)I(Ua)g)eE]L UB={Uw|we B}.

If L is a lattice, for a given £, we set

tyy (@) = (@e—gy)eeLs t1)(B) = {t¢y(w) | 0 € B}.
Then if the model possesses the corresponding symmetry, one has
Ta(UB|UE) = ma(BI§), Ta+e(te(B)Ite(§)) = ma(BIE), (2.61)

which ought to hold for all U, ¢, B, and &.

Definition 2.11. A measure u € P(2) is called a tempered Euclidean Gibbs
measure if it satisfies the Dobrushin-Lanford-Ruelle (equilibrium) equation

/ ma(Blo)u(dw) = w(B), forall A €L and B € B(RQ). (2.62)
Q

By G' we denote the set of all tempered Euclidean Gibbs measures of our model
existing at a given 8. So far we do not know whether G' is non-void; if it is, its
elements should be supported by ©'. Indeed, by (2.54) and (2.55) mA (2 \ Q]§) =
0 for every A € L and & € Q. Then by (2.62),

wR\QHY=0 = uQH=1. (2.63)
Furthermore,
n({loeQ | Veel: oeCq)) =1, (2.64)

which follows from (2.57). If the model is translation and/or rotation invariant,
then, for every U € O(v) and £ € L, the corresponding transformations preserve
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G'. That is, for any u € G°,

def _ def _

Ou(p) = nolUeG, 6w = pnot;' egl. (2.65)
In particular, if G' is a singleton, its unique element should be invariant in the
same sense as the model. One more invariance of the Euclidean Gibbs measures
is connected with the dependence of their Matsubara functions on t’s.

Definition 2.12. A measure u € G' is called t-shift invariant if its Matsubara
functions (2.16) have the property (2.14).

The t-shift invariance is crucial for reconstructing quantum Gibbs states on von
Neumann algebras, see Refs. 20, 35. This means that only the elements of G'
which have this property are of physical relevance.

Given «a € Z, by W, we denote the usual weak topology on the set of all
probability measures P(£2,) defined by means of bounded continuous functions
on Q. By W" we denote the weak topology on P(2"). With these topologies the
sets P(2,) and P(R2") become Polish spaces (Theorem 6.5, page 46 of Ref. 70).

The proof of the existence of Euclidean Gibbs measures will be based on the
following statement.

Lemma 2.13. For each a € I, every W,-accumulation point 1 € P(2') of the
family {mp(-1E) | A € L, & € Q) is an element of G'.

Proof: For each o € Z, Cp(S2,,) is a measure defining class for P(2"). Then a
measure i € P(2) solves (2.62) ifand only if forany f € Cy(2,)and all A € L,

F@n(do) = / a(flo)n(do). (2.66)
Ql Ql

Let {ma,(-|6x)}ken converge in W, to some pu € P(Q"). For every A € L, one
finds k5 € N such that A C Ay for all £ > kj. Then by (2.56), one has

/ F@)ma, (dolg) = / a(f1)Ta, (dolE0).
Qt Qt

Now by Lemma 2.10, one can pass to the limit £ — +o0o and get (2.66). O

Let us stress that in the lemma above we suppose that the accumulation point
is a probability measure on '. In general, the convergence of {u, },eny C P(RY)in
every W, @ € Z, does not yet imply its W!-convergence. However, in Lemma 4.5
and Corollary 5.1 below we show that the topologies induced by W, and W' on a
subset of P(£2), which includes G' and all 7, (+|§), coincide.
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3. THE RESULTS

In the first subsection below we present the statements describing the general
case, whereas the second subsection is dedicated to the case of v = 1 and Jyp» > 0.

3.1. Euclidean Gibbs Measures in the General Case

We begin by establishing existence of tempered Euclidean Gibbs measures
and compactness of their set G'. For models with non-compact spins, here they are
even infinite-dimensional, such a property is far from being evident.

Theorem 3.1. For every > 0, the set of tempered Euclidean Gibbs measures
G is non-void and W"- compact.

The next theorem gives an exponential moment estimate similar to (2.26).
Recall that the Holder norm | - lcg was defined by (2.18).

Theorem 3.2. Foreveryo € (0, 1/2) and x > 0, there exists a positive constant
Cs.1 such that, for any £ and for all u € G,

/ exp (,\(,WPCg + }f|a)g|2L%)[,L(da)) < (s, (3.1)
Q

where Ay is the same as in (2.26).

According to (3.1), the one-site projections of each . € G' are sub-Gaussian.
The bound C; 1 does not depend on ¢ and is the same for all .« € G, though it may
depend on o and x. The estimate (3.1) plays a crucial role in the theory of the set
G'. Such estimates are also important in the study of the Dirichlet operators H,,
associated with the measures u € G, see Refs. 9, 10.

The set of tempered configurations Q° was introduced in (2.46), (2.48) by
means of rather slack restrictions (c.f., (2.34)) imposed on the L%—norms of wy.
By construction, the elements of G are supported by this set, see (2.63). It turns
out that they have a much smaller support (a kind of the Lebowitz-Presutti one,
see Ref. 62). Given b > 0 and o € (0, 1/2), we set

E(b,o) ={& € Q| (Vlo € L) (FAgy, €L) (VL € AS )
|€elEy < blog(l + [€ = L)), (3.2)

which in view of (2.38) is a Borel subset of Q'.
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Theorem 3.3. For every o € (0, 1/2), there exists b > 0, which depends on o
and on the parameters of the model only, such that for all n € G,

W(ED, o)) = 1. (3.3)

The last result in this group is a sufficient condition for G' to be a singleton,
which holds for high temperatures (small §). It is obtained by controlling the
“non-convexity” of the potential energy (2.3). Let us decompose

Ve="Vie+ Va2, (3.4)
where V1, € C*(R") is such that
—a<b Einf inf (V). )y < . (3.5)
£ x,yeRv, y#0 ’
As for the second term, we set
0<5 % sup { sup Vs (x) — inf Vz,g(x)} < 0. (3.6)
¢ lxeRv xeR

Its role is to produce multiple minima of the potential energy responsible for
eventual phase transitions. Clearly, the decomposition (3.4) is not unique; its
optimal realizations for certain types of ¥, are discussed in section 6 of Ref. 11.

Theorem 3.4. The set G' is a singleton if
P < (a+b))Jp. (3.7)

Remark 3.5. The latter condition surely holds at all g if
§=0 and Jy<a+b. (3.8)

In this case the potential energy W, given by (2.3) is convex. If the oscillators are
harmonic, § = b = 0, which yields the stability condition

Jo < a. (3.9)

The condition (3.7) does not contain the particle mass m; hence, the property
stated holds also in the quasi-classical limit* m — +oo.

3.2. Ferroelectric Scalar Models

Recall that here we consider the case where Jyr > 0and v = 1.

4More details on this limit can be found in Ref. 4.
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Let us introduce an order on the set G'. As the components of the con-
figurations w € 2 are continuous functions w, : Sgp — R”, we can set w < & if
wy(t) < @¢(7) for all £ and t. Thereby, we define the following set of increasing
functions

K (@) ={f e G() | flo) = f(@), if o=a} (3.10)

which is a proper cone.

Lemma 3.6. If for given u, fi € G', one has
u(f)=af),  for all fe K (@), (3.11)
then u = fi.

The proof of this lemma will be given below in Sec. 6. We use it to establish
the so called stochastic order on G'.

Definition 3.7. For u, fi € G', we say that u < fi, if
w(f) < acf), for all f e K(Q). (3.12)

Our first result in this subsection is the following

Theorem 3.8. The set G* possesses maximal p and minimal ju_ elements in the
sense of Definition 3.7. These elements are extreme and t-shift invariant; they are
also translation invariant if the model is translation invariant. If Vy(—x) = Vy(x)
forall ¢, then u (B) = u_(—B) for all B € B(RQ).

Now let the model be translation invariant, which in particular means . = Z¢.
We are going to study the limiting pressure which contains important information
about the thermodynamic properties of the model. A special attention will be
paid to the dependence of the pressure on the external field 4, c.f., (2.6). The
corresponding analytic properties will be used in the study of phase transitions.
For A € L, we set

1
pah,§) = mlog Z\(E), £eqQ. (3.13)

To simplify notations we write pa(h) = pa(h, 0). For u € G', we set
palh) = / pa(h, §)u(d§). (3.14)
Q
If for a cofinal sequence L, the limit

p(h) < tim ply (i) (3.15)
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exists, we shall call it pressure in the state n. We shall also consider
def ..
ph) = lim pA(#). (3.16)

To obtain these limits we impose a certain condition on the sequences £. Given
I=(h,...Ip),I'=(l,...1}) € L =74, such that /; </l forall j=1,....d,
we set

F={¢el|l<¢ </, foralj=1,....d). (3.17)

For this parallelepiped, let &(I") be the family of all pair-wise disjoint translates
of T which cover L. Then for A € L, we set N_(A|I") (respectively, N (A|T"))
to be the number of the elements of &(I") which are contained in A (respectively,
have non-void intersections with A). Then we introduce, see Ref. 75,

Definition 3.9. A cofinal sequence L is a van Hove sequence if for every I,

(@) HmN-(AID) =+00;  (B) lm(N-(AID)/No(AID) = 1. (3.18)

Theorem 3.10. For every h € R and any van Hove sequence L, the limits (3.15)
and (3.16) exist, do not depend on the particular choice of L, and are equal, that
is p(h) = p*(h) for each u € G

The following result, which will be proven in Sec. 7 below, is a consequence
of Theorems 3.10 and 3.8.

Corollary 3.11.  If p(h) is differentiable at a given h € R, then G' is a singleton
at this h.

In the DLR approach the multiplicity of Gibbs states corresponds to phase
transitions. In physical systems structural phase transitions manifest themselves
in the macroscopic displacements of particles from their equilibrium positions. For
translation invariant ferroelectric models with ¥, = V' obeying certain conditions,
the appearance of such macroscopic displacements at low temperatures was proven
in Refs. 16, 27, 39, 48, 71. Thus, one can expect that |G'| > 1 at big 8. The latter
fact would readily imply the appearance of macroscopic displacements, but the
converse need not to be true in general. To avoid technical complications we prove
this for . = Z¢, d > 3 — by means of correlation inequalities this result can be
extended to the case of irregular . C RY.

Let us impose further conditions on Jy and V. The first one is

inf  Jp & J>0. (3.19)

0.0 |0—|=1
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Next we suppose that V; are even continuous functions and the upper bound in
(2.4) can be chosen in the form

Vi)=Y 692 260 < —a; b9 >0, s=2,  (3.20)

s=1

where a is the same as in (2.21) or in (2.3), and » > 2 is either a positive integer
or r = +00. In the latter case we assume that the series

+00

2s)!
(1) = ; %b@r‘*‘, (3.21)

converges at some ¢ > 0. Since 2b'") + a < 0, the equation
a+2bW 4+ o(r) = 0, (3.22)
has a unique solution ¢, > 0. Finally, we suppose that for every £,
V(xe) — Ve(xe) < V(&) — Ve(¥e), whenever x? < %2, (3.23)

IfVi(xe) = ve(x g) and v, are differentiable, the condition (3.23) may be formulated
as an upper bound for v;. For d > 3, we set

d
1 dp
04 = / —_— E(p)=) [1—cosp;]. (3.24)
(Zﬂ)d (—m,m]¢ E(P) JX]: /
Let also f : [0, +00) — [0, 1) be the function defined implicitly by
f(ttanht) =¢t~! - tanhz, for t >0, and f(0)=1. (3.25)

It is convex and monotone decreasing on (0, 4-00). For an account of its properties
see Ref. 29, where it was introduced.
By (3.25) one readily proves that for every fixed « > 0, the function

(0, +00) 3t > ¢P(t, ) = atf(t/a), (3.26)
is monotone increasing to o? as t — +o0.
Theorem 3.12. Let d > 3 and the above assumptions hold. Then under the
condition
J > 604/8mt?2, (3.27)

there exists B, > 0 such that |G| > 1 whenever B > B,. The bound B, is the
unique solution of the equation

20,m/J = (B, 4mt,). (3.28)
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As was shown in Refs. 2, 6, 50, quantum effects, occurring in particular at
small values of the particle mass m, can suppress abnormal fluctuations. Thus, one
might expect that such effects can cause |G'| = 1 occurring at all temperatures.
The strongest result in this domain—the uniqueness at all 8 due to quantum effects
for the model with nearest neighbor interaction and a certain type of 7 (so called
EMN, see Ref. 31)—was proven in Ref. 5. In Theorem 3.13 below we extend this
result in two directions. We consider a substantially larger class of anharmonic
potentials and make precise the bounds of the uniqueness regime. Furthermore,
unlike to the mentioned papers, we do not suppose that the interaction has finite
range and that L is regular. Regarding the anharmonic potentials we suppose that
each V, is even and hence can be written

Ve(x) = ve(x?). (3:29)

Furthermore, we suppose that there exists the function v : [0, +00) — R which
is convex and such that

ve(t) — v(t) < ve(f) — v(@) whenever ¢ < 6. (3.30)

In typical cases of Vy, like (2.6), as such a v one can take a convex polynomial of
degree r > 2.
Next we introduce the following one-particle Hamiltonian (c.f., (2.21), (2.2))

N 1 [0\ a
H=—-——|— —x? 2, xeR. 3.31

2m <8x> +2x ), 331)
It has purely discrete non-degenerate spectrum { £, },en,. Thus, one can define the
parameter

A =min(E, — E,_1), (3.32)
neN

which is positive and depends on the model parameters 7, a, and on the choice of
v. Recall, that Jy was defined by (2.5).

Theorem 3.13. Let the anharmonic potentials V; be as above. Then the set of
Euclidean Gibbs measures is a singleton if

mA? > Jj. (3.33)

Note that the above result is independent of 8 > 0 and that (3.33) is a stability
condition like (3.8), where the parameter m A? appears as the oscillator rigidity.
If it holds, a stability-due-to-quantum-effects occurs, c.f., Refs. 6, 49, 50, 54. If
v is a polynomial of degree r > 2, the rigidity mA? is a continuous function
of the particle mass m; it gets small in the quasi-classical limit m — +o00, see
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Ref. 54. At the same time, for m — 0+, one has mA? = O(m~C~V/0+D) see
Refs. 2, 54. Hence, (3.33) certainly holds in the small mass limit, c.f., Refs 3, 5.
To compare the latter statement with Theorem 3.12 let us assume that L = Z¢,
d>3, Jypw=Jiff |£ —¢| =1, and all ¥, coincide with the function given by
(3.20). Then the parameter (3.32) obeys the estimate A < 1/2mt,, see Ref. 54,
where t, is the same as in (3.27), (3.28). In this case the condition (3.33) can be
rewritten as

J < 1/8dmt?. (3.34)

One can show that 6; > 1/d and d6; — 1 as d — +00; hence, the estimates
(3.27) and (3.34), which give sufficient conditions for the phase transition to occur
or to be suppressed, become asymptotically sharp.

Consider again a translation invariant version of our model, i.e., L. = 74, Set

fLaguerre = {QD R—>R

o(t) = goexp(yo)t” | [(1 + vit) } : (3.35)

i=1

where gy > 0,n € Ny, y; > Oforalli € Ng,and ) ;2, s < 00. Each € Fiapuerre
can be extended to an entire function ¢ : C — C, which has no zeros outside of
(—00, 0]. These are Laguerre entire functions, see Refs. 42, 52, 57. In the next
theorem the parameter a is the same as in (2.21).

Theorem 3.14. Let the model we consider be translation invariant and the
anharmonic potential be of the form

V(x)=v(x?>)—hx, heR, (3.36)

where v(0) = 0 and is such that for a certain b > —a /2, the derivative v’ obeys
the condition b +v' € Fiaguerre. Then the set G' is a singleton if h # 0.

3.3. Comments

In what follows, we have developed a consistent rigorous theory of the equi-
librium thermodynamic properties of quantum models like (1.1), based on a path
measure representation of local Gibbs states (2.8). In this theory, the model is
interpreted as a system of infinite-dimensional spins; its global properties are de-
scribed by the Euclidean Gibbs measures constructed with the help of the DLR
equation. As the spins are infinite-dimensional, the methods employed are more
involved and complicated than those used for classical models. Additional com-
plications arise from the fact that we study a general case, where the model has
no spacial regularity and the interaction is of infinite range. In view of the latter
possibility, the only way to develop the theory is to impose a priori restrictions
on the support of the Gibbs measures, which was done by means of the weights
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obeying the conditions (2.36)—(2.39). These conditions are competitive and can
contradict each other if the interaction decays too slowly. If they are satisfied, the
set of tempered Gibbs measures G' is non-void, Theorem 3.1. A posteriori, by
Theorem 3.3 its elements have much smaller support than Q, which does not
depend on the particular choice of the weights. If the interaction has finite range,
the local specification and the corresponding Gibbs measures can be defined with
no support restrictions as probability measures on 2. The existence of Gibbs mea-
sures would follow from the proof of Theorem 3.1. However, in this case the set of
all Gibbs measures would be too big—it may contain “improper” elements, which
have no physical meaning and hence should be excluded from the theory. This
can be performed by means of the weights satisfying the same conditions, except
for (2.39) which now holds automatically. Once this is done, the corresponding
tempered Gibbs measures obey the estimate (3.1) and hence have the support
described by Theorem 3.3, independent of the weights.

Now let us compare our results with those known for similar classical and
quantum models.

® Theorem 3.1. A standard tool for proving the existence of Gibbs measures
is the celebrated Dobrushin criterion, see Theorem 1 in Ref. 25. To apply
it in our case one should find a compact positive function / defined on Cg
such that for all £ and & € €,

[ Moom@ols) < 4+ 3 onteo (337)
Q2 e,

where

A>0;, ILipy>0 forall £,¢, and supZ[w < 1.
¢ 5

Then (3.37) would yield that for any & € €2, such that sup, #(§,) < oo,
the family {ms(:|&)}acL is relatively compact in the weak topology on
P(2) (but not yet in W,, W"). Next one would have to show that any
accumulation point of {7 (-|€)}acL is @ Gibbs measure, which is much
stronger than the fact established by our Lemma 2.13. Such a scheme
was used in Refs. 17, 24, 82 where the existence of Gibbs measures
for lattice systems with the single-spin space R was proven. In those
papers the specific properties of the models, such as attractiveness and
translation invariance, were cricial. The direct extension of this scheme
to quantum models seems to be impossible. The scheme we employ for
proving Theorem 3.1 is based on compactness arguments in the topologies
Wy, W, After obvious modifications it can be applied to models with more
general inter-particle interactions. Further comments on this item follow
Corollary 4.2.
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e Theorem 3.2 gives a uniform exponential moment estimate for tempered
Euclidean Gibbs measures in terms of model parameters, which in princi-
ple can be proven before establishing the existence. For systems of classical
unbounded spins, the problem of deriving such estimates was first posed in
Ref. 17 (see the discussion following Corollary 4.2). For quantum anhar-
monic systems, similar estimates were obtained in the so called analytic
approach, alternative to the traditional DLR scheme, see Refs. 7, 8, 13.
In this analytic approach, G' is defined as the set of probability measures
satisfying an integration-by-parts formula, determined by the model. This
gives additional tools for studying G* and provides a background for the
stochastic dynamics method in which the Gibbs measures are treated as
invariant distributions for certain infinite-dimensional stochastic evolution
equations, see Ref. 14. In both analytic and stochastic dynamics methods
one imposes a number of technical conditions on the interaction potentials
and uses advanced tools of stochastic analysis. The method we employ
for proving Theorem 3.2 is much more elementary. At the same time,
Theorem 3.2 gives an improvement of the corresponding results of Ref. 7
because: (a) the estimate (3.1) gives a much stronger bound; (b) we do not
assume that Vy are differentiable—an important assumption of the analytic
approach.

e Theorem 3.3. As might be clear from the proof of this theorem, every
w € P(2') obeying the estimate (3.1) possesses the support property (3.3).
For Gibbs measures of classical lattice systems of unbounded spins, a sim-
ilar property was first established in Ref. 62; hence, one can call E(b, o)
a Lebowitz-Presutti type support. This result of Ref. 62 was obtained by
means of Ruelle’s superstability estimates, 7® applicable to translation in-
variant models only. Its generalization to translation invariant quantum
model was done in Ref. 69, where superstable Gibbs measures were spec-
ified by the following support property

sup { (1 +2N)™ Z |a)g|iz <C(w), wm—a.e..
NeN e1e<N ’

Here we note that by the Birkhoff-Khinchine ergodic theorem, for any
translation invariant measure u € P(Q2") obeying (3.1), it follows a much
stronger support property—for every o € (0, 1/2), » > 0, and p-almost
all w,

sup 3 (14+2N)™ Z exp (}Lg|a)g|zcg + }f|a)g|iz) < C(o, %, w).
NeN e1e<N !
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In particular, every periodic Euclidean Gibbs measure constructed in sub-
section 7.5 below has this property.

e Theorem 3.4 establishes a sufficient uniqueness condition, holding in
particular at high-temperatures (small B). Here we follow the papers,
(L12) where a similar uniqueness statement was proven for translation
invariant ferromagnetic scalar version of our model. This was done
by means of another renown Dobrushin result, Theorem 4 in Ref. 25,
which gives a sufficient condition for the uniqueness of Gibbs mea-
sures. The main tool used in Refs. 11, 12 for estimating the elements
of the Dobrushin matrix was the logarithmic Sobolev inequality for the
kernels ;.

e Theorem 3.8. For classical ferromagnetic spin models, similar results were
obtained in Refs. 17, 73 and Ref. 60, 62 . The extreme elements py play
an important role in proving Theorems 3.12, 3.13, and 3.14.

® Theorem 3.10. For classical ferromagnetic spin models, a similar state-
ment was proven in Refs. 17, 62.

e Theorem 3.12. For translation invariant lattice models, phase transitions
are established by means of the infrared estimates, see Refs. 16, 27, 39,
48, 71. Here we use a version of the technique developed in those papers
and the corresponding correlation inequalities which allow us to com-
pare the model considered with its translation invariant version (reference
model).

e Theorem 3.13. For translation invariant models with finite range interac-
tions and with the anharmonic potential being the polynomial (2.6) with
all b®) > 0 except for bV (the so called EMN-class, see Ref. 31), the
uniqueness by quantum effects was proven in Ref. 5 (see also Ref. 3).
With the help of the extreme elements i € G' we essentially extend the
results of those papers. As in the case of Theorem 3.12, we employ correla-
tion inequalities to compare the model considered with a proper reference
model.

e Theorem 3.14. For classical lattice models, the uniqueness at nonzero /
was proven in 17:6%:62) ynder the condition that the potential (3.36) possesses
the property which we establish below in Definition 8.1. The novelty of
Theorem 3.14 is that it describes a quantum model and gives an explicit
sufficient condition for V' to possess such a property’.This theorem is
valid also in the quasi-classical limit m — +00, in which it covers all the
cases considered in Refs. 17, 60, 62. For (¢*), Euclidean quantum fields,
a similar statement was proven in Ref. 34.

3 Examples follow Proposition 8.2.
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4. PROPERTIES OF THE LOCAL GIBBS SPECIFICATION
4.1. Moment Estimates

Moment estimates for the kernels (2.54) we are going to derive will al-
low for proving the W'-relative compactness of the set {7 (-|€)}acL, Which by
Lemma 2.13 will yield G' # @. Integrating them over & € Q' we will get by the
DLR Eq. (2.62) the corresponding estimates for the elements of G*. Recall that 7,
stands for 7).

Lemmad4.1. Foranyx, ¢ > 0, and o € (0, 1/2), there exists C4.; > 0 such that
forallt € Land§ € Q,

f exp {Aglweley + xlwrl7; fro(dwl§) < exp {64.1 +0 ) el 1€l }
Q ’

[
4.1)
Here A, > 0 is the same as in (3.1).

Proof: Note that by (2.57) the left-hand side of (4.1) is finite and the second
term in exp{-} on the right-hand side is also finite since & € Q.
For any ¢ > 0, one has (see (2.5))

Jo 2 v 2
< Sl +5 KZ [ee - 2175, (42)

> Jwler. §)r3
7
which holds for all w, & € Q'. By these estimates and (2.30), (2.32), (2.52), (2.54)

LHS(4.1) < [1/Y,(9)] - exp iﬁ > el - |sef|i§}

14

. B

X / exp {)»a|wz|2cg + (e + Jo/219)|wzz|228 - f Vi(w(T)) df} x(dwy), (4.3)

Q 0
where
o, qr
Yi(9) = | exp 59 lwel7 — | Vilwe(r))dT ¢ x(dewy).
Q v o Jo

Now we use the upper bound (2.4) to estimate inf, Y;(¢), the lower bound (2.4)
to estimate the integrand in (4.3), take into account Proposition 2.1, and arrive at

(4.1). O

By Jensen’s inequality we readily get from (4.1) the following Dobrushin-like
bound.
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Corollary 4.2. For all £ and & € Q', the measures 7,(-|§), obey the estimate

[ omdole) < o+ 070 Y el -heeo), (44)

e/
with
h(@e) = holorly + xeels, (4.5)

which is a compact function h : Cg — R.

For translation invariant lattice systems with the single-spin space R and ferro-
magnetic pair interactions, integrability estimates like

log {/L eXp(Ale)m(dxly)} <4+ Z Loelyel,
R m

were first obtained by J. Bellissard and R. Heegh-Krohn, see Proposition III.1 and
Theorem II1.2 in Ref. 17. Dobrushin type estimates like (3.37) were also proven
in Refs. 24, 82. The methods used there essentially employed the properties of the
model and hence cannot be of use in our situation. Our method of getting such
estimates is much simpler; at the same time, it is applicable in both cases—classical
and quantum. Its peculiarities are: (a) first we prove the exponential integrability
(4.1) and then derive the Dobrushin bound (4.4) rather than prove it directly; (b)
the function (4.5) consists of two additive terms, the first of which is to guarantee
the compactness while the second one controls the inter-particle interaction.

Now by means of (4.1) we obtain the corresponding estimates for the kernels
7, with arbitrary A € L. Let the parameters o, x, and A, be the same as in (4.1).
For £ € A € L., we define

ny(AlE) = log{/ exp (ka|a)g|zcg +}t|welié)n,\(da)|§‘)}, (4.6)
Q
which is finite by (2.57).

Lemma 4.3. For every a € Z, there exists C47(ct) > 0 such that for all € € Q,

limsup ) ne(Al&)wa (o, £) < Car(@); (4.7)
AL LeA
hence,
limsupng (Al§) < Caq(a), for any £. (4.8)
AL

Thereby, there exists C49(£, E) > 0 such that for all A € L containing ¢,
ne(Al§) < Cao(E, §). (4.9)
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Proof: Given x > 0 and o € Z, we fix ¥ > 0 such that

9 el < 0o <0y < 2. (4.10)
7
Then integrating both sides of the bound (4.1) with respect to the measure
ma(dw|&) we get

n(AI§) < Car+0 Y Ll - lEel7

'eNe
2
+ log ! /Q exp (ﬂ; ol |me§> ﬂA(deS)}

< Cax+9 Y Vel -6l +0/x Y 1wl -ne(A§).  (411)

UelAe e

Here we have used (4.10) and the multiple Holder inequality

J (T o) an =TT, ( / widu>% ,

in which p is a probability measure, ¢; > 0 (respectively, ; > 0),i =1,...,n,
are functions (respectively, numbers such that Y '_  o; < 1). Then (4.11) yields

ne,(A1E) < D ne(AlE)wa(lo, €)

e
1 A
< ——— 1 Ca1 Y wallo, )+ 0J0 Y &2 wallo, €) |-
(4.12)

Therefrom, for all £ € QF, we get

lim sup n¢,(A[§) < limsup Y n,(Al€)wa(Lo. £)
A/L LeA

C4 1 def
< —F we(£o, £) = Car(a), 4.13
_1_M/%Z£j (lo. ) = Caz(@).  (413)
which gives (4.7) and (4.8). The proof of (4.9) is straightforward. O

Recall that the norm || - ||, was defined by (2.46). Given @ € Z and o € (0, 1/2),
we set, c.f., Remark 2.7.,

12
”s”a.a = |:ZK: |‘§Z|%}g wa(ZO’ E):| . (414)
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Lemma 4.4. Let the assumptions of Lemma 4.1 be satisfied. Then for every
a €T and & € Q' one finds a positive C415(§) such that for all A € L,

/Q lol7adolE) < Cais(@). @.15)

Furthermore, for everya € I, o € (0,1/2), and & € Q' for which the norm (4.14)
is finite, one finds a Cy4.16(€) > 0 such that for all A € L,

/Q ll2,, 7a(dol8) < Ca166). (4.16)

Proof: For any fixed & € QF, by the Jensen inequality and (4.12) one has

lim sup / lwllma(dol§)
ASLJIQ

< lim sup [i D ne(AEwa(0. £) + 7 IEel3 wa(0. z)}

AL L% pen tenc
< Cus(a)/x. (4.17)

Hence, the set consisting of the left-hand sides of (4.15) indexed by A € L is
bounded. The proof of (4.16) is analogous. i

4.2. Weak Convergence of Tempered Measures

Recall that /' : 2 — R is a local function if it is measurable with respect to
B(2) for a certain A € L.

Lemma 4.5. Let a sequence {ii,}nen C P(QY) have the following properties:
(a) for every a € L, each its element obeys the estimate

fg Nolkn(d0) = Ca(e), @.18)

with one and the same Cy13(ct); (b) for every local f € Co(Q2Y), {ttn()neny C R
is a Cauchy sequence. Then {ji,},en converges in W' to a certain u € P(QY).

Proof: The topology of the Polish space Q' is consistent with the following
metric (c.f., (2.47))

[o¢]

— Ol Wy — @
,o(w,cb):ZZ*k |0 — @la, +Zz,|gn,g| lwe — dylc, (419

= ltle-ole, =5 1+ |wg — dlc,
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where {o}ren C Z = (a, @) is a strictly decreasing sequence converging to . Let
us denote by Cp(2'; p) the set of all bounded functions f : ' — R which are
uniformly continuous with respect to (4.19). Thus, in accord with a known fact, see
e.g. Theorem 2.1.1, page 19 of Ref. 22, to prove the lemma it suffices to show that
under its conditions {i,(f)}sen is a Cauchy sequence for every [ € Cp(2'; p).
Given § > 0, we choose As € L and ks € N such that

o0
D2t < 53, Yot =oht <53, (4.20)

LeAS k=ks

For this § and a certain R > 0, we choose As(R) € L such that

By {way, 1 (b0, O/ wey, (G0, O} < 55 (4.21)
which is possible in view of (2.37). Finally, for R > 0, we set
Br = {w e Q| lwlla, < R} (4.22)
By (4.18) and the Chebyshev inequality, one has that for all # € N,
1n(R\ Br) < Cag(on,)/ R (4.23)

Now for /" € Cp(2';p), A €L, and n, m € N, we have

ln(f) = (O = 1n(fa) = (S
+2max{p,(|f — faD; um(1f — faD},  (4.24)

where fa(@) £ f(@a x 0ac). By (4.23),
pa(lf = fal) < 2Cq1s(e)l| flloo/ R?
+ [ 1@ = fon x 0l @29)
R
For chosen f € C{(€2'; p) and & > 0, one finds § > 0 such that for all w, & € Q',
| f(w) — f(®)| <e&/6, whenever p(w,d)<34.
For these f, ¢, and §, one picks up R(¢, §) > 0 such that

Cars(ou)ll flloo/ [R(e, 8)]* < &/12. (4.26)
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Now one takes A € I, which contains both As and As[R(e, §)] defined by (4.20),
(4.21). For this A, ® € Br(esy,andk =1,2,..., ks — 1, one has

lo = wn x Oncllz, = Y o7 way, (Lo, £) [wa, (Lo, £)/wa, (Co. 0)]

LeAc
< ) > w032 wa, (€0, ©) 5 (4.27)
T We|5> W, (Lo, £) < =, .
T3RE P S 3
where (4.21), (4.22) have been used. Then by (4.19), (4.20), it follows that

Yo € Bres):  plw, wp x 0pc) < 8, (4.28)

which together with (4.26) yields in (4.25)

e &
pa(lf = fal) < 3 + gt (Bree.s)) <

W ™

By assumption (b) of the lemma, one finds N, such that for all n, m > N,

IMUD—MMﬂN<§

Applying the latter two estimates in (4.24) we get that {u,},en is a Cauchy
sequence in the topology W' in which P(Q') is complete. O

5. PROOF OF THEOREMS 3.1-3.4

The existence of Euclidean Gibbs measures and the estimate (3.1) can be
proven independently. To establish the compactness of G* we will need (3.1), thus,
we first prove Theorem 3.2.

Proof of Theorem 3.2: Let us show that every u € P(€2) which solves the
DLR equation (2.62) ought to obey (3.1) with one and the same C3 ;. To this end
we apply the bounds for the kernels 5 (-|£) obtained above. Consider the functions

def .
Gn(wy) = exp(mln {)La|wg|2cg ~|—Jf|a)g|ié;N}), N e N.
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By (2.62), Fatou’s lemma, and the estimate (4.8) with an arbitrarily chosen o € Z,
we get

/ G w(wp)u(dw) = limsup / [ f GN<wz)nA(dw|$)} u(de)
Q Q Q

AL

< lim sup/Q |:/Q exp (Agla)glzcg + Jf|a)z|i%) nA(da)Ié):| u(dé)

AL

< / |:lim sup/ exp (kg|welzcg + Xlwﬂiz) JTA(da)Ié):| u(d§)
Q Q B

AL

def
<expCys(a) = Ci1.

In view of the support property (2.64) of any measure solving the equation (2.62)
we can pass here to the limit N — 400 and get (3.1). (Il

Corollary 5.1. For every a € Z, the topologies induced on G' by W, and W'
coincide.

Proof: Follows immediately from Lemma 4.5 and the estimate (3.1). |

Proof of Theorem 3.1: Let us introduce the next scale of Banach spaces (c.f.,
(2.46))

Qoo ={weQ | oo, <o}, o€(0,1/2), aeZ, (5.1)

where the norm || - ||o., Was defined by (4.14). For any pair o, o' € Z such that
a < o, the embedding @, , <> Q4 is compact, see Remark 2.6. This fact and
the estimate (4.16), which holds for any & € €2, ,, imply by Prokhorov’s criterion
the relative compactness of the set {7 (:|&)}acL in W, . Therefore, the sequence
{mA(-]0)} acL is relatively compact in every W, « € Z. Then Lemma 2.13 yields
G' # @. By the same Prokhorov criterion and the estimate (3.1), we get the W,-
relative compactness of G'. Then in view of the Feller property (Lemma 2.10), the
set G' is closed and hence compact in every W,, o € Z, which by Corollary 5.1
completes the proof. O

Proof of Theorem 3.3: To some extent we shall follow the line of arguments
used in the proof of Lemma 3.1 in Ref. 62. Given ¢, £y, b > 0, 0 € (0, 1/2), and
A C L, we introduce

Ee(lo. b, o) = {6 € Q| |&elgy < blog(l + ¢ — L))},

Eallo.b,0) = () Eu(to, b, 0). (5.2)

LeA
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For a cofinal sequence £, we set
E(Lo. b.o) = | Bac(lo. b.0), E(b.0)= (") E(Lo. b, 0). (5.3)
AeLl Loell

The latter E(b, o) is a subset of Q' and is the same as the one given by (3.2). To
prove the theorem let us show that for any o € (0, 1/2), there exists b > 0 such
that for all £y and u € G,

w(Q\ E(Ly, b,0)) =0. (5.4)
By (5.2) we have
Q\ Eaclly, b,0)={£ € Q| (3t e A): |sg|2cg > blog(1 + |€ — Lol)}
cleeQ|@en: |s@|2Cg > blog(1+ € — &)}, (5.5)

for any A C A. Therefore,

2 (ﬂ [2\ EAL»(eo,b,cr)]) = limp(R\ Eaclo,b,0)),  (56)

Ael

which holds for any cofinal sequence L. By (5.5),

1 (Q\ Bac(ly, b, 0)) = p (U [\ Ei(o, b, o)])

LeAc
<Y ({1 exp (ho €l > (14 [€ = Lo])}).
Le A
Applying here the Chebyshev inequality and the estimate (3.1) we get
(2N Ene(lo, b, o)) < C1 Y (1+[€— o).
LeAc

In view of (2.1) the latter series converges for any b > d/A,. In this case by (5.6)
n(Q\ E(y, b,0)) = ligw([Q \ Eac(bo, b,0)]) =0,

which yields (5.4). O
Let £ be the set of all continuous local functions f : Q' — R, for which there
existo € (0,1/2), Ay € L, and Dy > 0, such that

|f@)* < D; > exp (holwelgy),  forall o e Q' (5.7)
KEA/

where A, is the same as in (2.26) and (3.1). Let also ex(G") stand for the set of all
extreme elements of G'.
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Lemma 5.2. For every u € ex(GY) and any cofinal sequence L, it follows that:
(a) the sequence {7 (-|&)} acc converges in W' to this ju for p-almost all § € QF;

(b) for every [ € &, one has limz wo(f|€) = u(f) for pu-almost all § € Q.

Proof: Claim (c) of Theorem 7.12, page 122 in Ref. 36, implies that for any
local 1 € Cyp(Q2Y),

li[r:nnA(ﬂé) =u(f), for p—almostall& e Q" (5.8)

Then the convergence stated in our claim (a) follows from Lemmas 4.4 and 4.5.
Given f e Eand N € N, weset Qy = {w € Q| | f(w)| > N} and

AC)) if | f(o)l < N;

fu(@) = { Nf(@)/|f(@)| otherwise.

Each fy belongs to Cy,(Q') and fy — f point-wise as N — —+o00. Then by (5.8)
there exists a Borel set 8, C ', such that u(E,) = 1 and for every N € N,

lim7a(fy1§) = u(fv), forall§ € By (5.9)

Note that by (4.6), (4.9), and (5.7), for any £ € E,, one finds a positive Cs 19(f; &)
such that for all A € L, which contain A , it follows that

/Q (@)Padolé) < Csao(f, £). (5.10)

Hence

lmA(f18) = ma(fN1E)] < 2/9 NS (@)lma(dolf)

< % - /Q L (@)Pra(dole) < % Cs10(f. ).

Similarly, by means of (5.7) and Theorem 3.2, one gets

2
() — u(f¥)l < A DrCs .

The latter two inequalities and (5.9) allow us to estimate |75 (/&) — u(f)| and
thereby to complete the proof. O

Proof of Theorem 3.4: For the scalar translation invariant version of the model
considered here, the high-temperature uniqueness was proven in Refs. 11, 12 by
means of Dobrushin’s criterium. The proof given below is a modification of the
arguments used there.

The main idea of the method of Dobrushin is to control the Wasserstein
distance R[7m,(-|€); 7, (-|€")] between the measures 7w, (-|&) and 7r,(-|€") with & £ &',
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In our context, its appropriate choice may be made as follows. For given ¢ and
£, 8 € QF, we set

’

Rlm(-1§); me(1EN] = sup

feLipi(L})

/ Flwom(dols) — / Flonm(dole)
Q Q

(5.11)
where Lipl(LIZS) stands for the set of Lipschitz-continuous functions f : L/ZS - R
with the Lipschitz constant equal one. The Dobrushin criterion (see Theorem 4 in
Ref. 25) employs the matrix

RLxo((1§); 7e(-18")]
& — Evlpz

cw=sup{ } t#£0, 0,0 el (5.12)

where the supremum is taken over all £, &’ € Q' which differ only at ¢’. According
to this criterium the uniqueness stated will follow if

sup » " Cor < 1. (5.13)
 peLng
In view of (2.57) the map
f
Ly Y6 2 [ fomdo) (5.14)
Q

has the following derivative in direction ¢ € L%

(VY (), &)1z = —Jee [ (f - (o0, C)Lg,lé) — o(f18) - e (e, E)Lﬁlf)]'

By Theorem 5.1 of Ref. 11, the measures 77,4(-|£) obey the logarithmic Sobolev
inequality with the constant

Cis = e )(a + b), (5.15)
which is independent of £. By standard arguments this yields the estimate
|(VYE). )3 | = CuslJeel - 12175 (5.16)
Then with the help of the mean value theorem from (5.12) and (5.15) we get
Cov < |Jew| - €” /(@ +b).

Thereby, the validity of the uniqueness condition (5.13) is ensured by (3.7). O
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6. PROOF OF THEOREMS 3.8-3.10
6.1. Stochastic Order and the Proof of Theorem 3.8

First we prove that the cone K, (Q2") may be used to establish an order on G,

that is it has the property: if u(f) < f(f) and f(f) < u(f) forall f € K (QY),
then u = fi.

Proof of Lemma 3.6: Let us show that the cone K (2") contains a defining class
for G'. Usually, measure defining classes of functions are established by means of
monotone class theorems, see e.g., Ref. 19, pages 36-39. In our situation, a suffi-
cient condition for a set of bounded continuous functions to be a measure defining
class may be formulated as follows: is should (a) contain constant functions; (b)
be closed under multiplication; (c) separate points of Q. The class (3.10) does not
meet (b); hence, to prove the stated one has to use additional arguments.

A continuous function f : Q' — Ris called a cylinder function if it possesses
the representation

S(@) = plw (1), ..., wy,(Th)), (6.1)

with certain n € N, ¢y,...,¢,, t1,..., Ty, and a continuous ¢ : R” — R. By
K iyl(Q‘) we denote the subset of K (Q') consisting of cylinder functions. Suppose
that the equality (3.11) holds for all f € Kiyl(Qt). Then

fwg(t)u(dw)zf we(7)f(dw), forall ¢, 7, ;. (6.2)
o o

Forfixed ¢4, ..., ¢, and 7q, ..., T,, let P and P be the projections of the measures
w and fi on R”. That is, each of P and P obeys

[ foman = [ ge....xp@
for f and ¢ as in (6.1). Then by (3.11), it follows that
/Rn d(x1, ..., x,)P(dx) < /Rn (x1, ..., x,)P(dx), (6.3)
for all increasing ¢. Let Pbea probability measure on R?", such that
P(dx) = /R P(dx,d%), PdF)= /R P(dx, d%).

Thus, Pisa coupling of P and P. Of course, the above equalities do not determine
P uniquely. By the Kantorovich-Rubinstein duality theorem, the Wasserstein dis-
tance, c.f., (5.11), between the measures P and P which have first moments, can
be defined as follows, see Ref. 28,

R(P, P) = inf/ Ix — %|P(dx, d%), (6.4)
Rzn
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where infimum is taken over all couplings of P and P. It is a metric, and the
convergence of a sequence of measures in this metric is equivalent to its weak
convergence combined with the convergence of the first moments. Consider

M={(x,%)eR” |x; <%, forall i=1,...,n}.

As this set is closed in R?", by Strassen’s theorem (see page 129 of Ref. 64), from
(6.3) it follows that there exists a coupling P, such that

P.(M)=1. (6.5)

Thereby,

R(P. P) s[ i — £ P (dv, d¥)
M

<> | G —x)Pudx,d¥)

i=1 YR
= ; /1; X [P(dx) — P(dx)] = 0.

The latter equality follows from (6.2). Since the subset of C,(R2") consisting of all
cylinder functions (6.1) is a defining class for P(2"), this yields u = fi. O

One observes that for (6.3) to hold, it was enough to have © < ji, c.f., (3.10).
Thus, we have one more important fact arising from the proof of the above lemma.

Corollary 6.1. If for any u, i € G\, such that u < fi, all their first moments
coincide, i.e., (6.2) holds, then u = fi.

Remark 6.2. For every L, ty(w) < t(®) if w < @. This means that the transfor-
mation 0 defined in (2.65) is order preserving.

Proof of Theorem 3.8: In establishing the existence of the elements p1 the main
point was to prove Lemma 3.6. Thereby, the existence of p. can be proven by
literal repetition of the arguments used in Ref. 17 for proving Theorem IV.3. They
are unique by definition. Indeed, for two maximal elements, say @ and /i, one
would have 4 < fiy and iy < py at the same time. Thus, u = fi+. The proof
of the extremeness (respectively, the symmetry properties) of 4 can be done by
following the proof of Proposition V.1 (respectively, Proposition V.3) in Ref. 17.
Some additional properties of ©+ will be described in the subsequent section. [
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The result just proven and Corollary 6.2 yield the following

Lemma 6.3. Suppose that, for all ¢,

H(@¢(0)) = p—(@¢(0)). (6.6)
Then G' is a singleton. If the model is symmetric, then (6.6) turns into

1 (@¢(0)) = p—(w¢(0)) = 0.

6.2. Existence of Pressure and the Proof of Theorem 3.10

Here we consider a translation invariant version of our model. Given R > 0
and A € L, let BgA be the set of all £ € A€, such that dist(¢, A) < R. Then for a
van Hove sequence £ and any R > 0, one has lim |95 A|/|A| = 0, yielding

1
lim— " Ju=0. (6.7)
£ |A| LeA,l'eN¢

The existence of van Hove sequences means the amenability of the graph (L, E),
E being the set of all pairs £, ¢/, such that |£ — ¢’| = 1. For nonamenable graphs,
phase transitions with  # 0 are possible; hence, statements like Theorem 3.14 do
not hold, see Refs. 43, 65.

Let us prove first the existence of the pressure corresponding to the zero
boundary conditions.

Lemma 6.4. For every h € R, the limiting pressure p(h) = lim pa(h) exists
for every van Hove sequence L. It is independent of the particular choice of L.

Proof: Fort>0,& € Q' and A C A, let wX?A, YA a(2) be defined by (7.24)
below with the potentials ¥, = V' having the form (3.36). Then we set
1
Jaalt) = Al log YA a(2), t>0. (6.8)
This function is differentiable and
def 1

aaalt) = fial)= m Z JM'WX,)A[(Q)@,CD@')L@]
LUeN

1
+— > Jww\[(@n o] =0, (69)
[A| ’ ?

LeAl'eN\A

Here we used that w/(\') al(we, wg) 13 ] > 0, which follows from the GKS inequality
(7.4). The function g A is also differentiable and

gy.alt) =0, (6.10)
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which may be proven similarly by means of the GKS inequality (7.5). Therefore,

Ja.a0) = fa,a(1) = gaa(l). (6.11)

Now we take here A = A and obtain that p, is a convex function of 4. Further-
more, by (4.15), for any o € Z,

1og Yi1,16)(0) < pa(h) < JoCa15(0)/2. (6.12)

By the translation invariance the lower bound in (6.12) is independent of £. There-
fore, the set {pa(h)}acL has accumulation points. For one of them, p(h), let
{T'»}sen be the sequence of parallelepipeds such that pr, () — p(h)asn — +oo0.
Let also £ be a van Hove sequence. Givenn € Nand A € £, let £, (A) C &(T,,)
(respectively, £F(A) C &(T,)) consist of the translates of I',, which are contained
in A (respectively, which have non-void intersections with A). Let also

AE = U r. (6.13)
regf
Now we take in (6.8) first A = A, then A = A, A = A}, and obtain by (6.11)
1A, |
IA]

1AL
|Al

Pa; (h) = pa(h) = Py (h). (6.14)

Let us estimate p,=(#) — pr,(h). To this end we introduce for £ > 0, c.f., (7.24),

1

XA;(t)=/Q eXp 5 Z Z Jow(@e, 0¢)p2

Ay reg, ¢.0er

+r Y Y Jwlen W)}

I[Mefy, T4 el Cel”

B
+ Y /0 (o) — v @P)] dr | xp- @), (6.15)

teh,
and
Saz () = A log X - (2). (6.16)
Then
I =pash [0 = S e = pri). (617

reg,
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Observe that pr(h) = pr,(h) forallT" € &(I',,), which follows from the translation
invariance of the model. Thereby,

0 < pa;(h) = pr, () < f1-(D)
1

" A Yo DD Juma; (@ w0)310)

I\[Veg,, T#I Lel’ Lel”

Z Z Z Jewmy; ((@e, wz')Lg,IO)

reg, tel t'ere

1

===
|An |

< J(I',)Ca.15(0), (6.18)

where we used the estimate (4.15) and set

J(T,) = ﬁ SN = |;—| >3 Jw. forevery T e &(T,).
n

tel’, Uel’s Lel’ el

(6.19)
In deriving (6.18) we took into account that the function (6.16) has positive first
and second derivatives, c.f., (6.9) and (6.10). By literal repetition one proves that
both estimates from (6.18) hold also for p,+(#) — pr,(). In view of (6.7) the
above J(I',) may be made arbitrarily small by taking big enough I',,. Thereby, for
any ¢ > 0, one can choose n € N such that the following estimates hold (recall
that pr, = pasn — 400)

lpr,(h) — p(h)] < €/3, 0 =< py,(h)— pr,(h) < ps;(h) — pr,(h) < €/3.
(6.20)
As L is a van Hove sequence, one can pick up A € £ such that

AT AT
max { (% - 1) pas () (1 - 'lA"l') pmh)} <3,

which is possible in view of (6.12). Then for the chosen » and A € L, one has

|pa(h) — p(W)| < |pr,(h) — p(h)| + par(h) — pr,(h)

AT A
+ max{CIICI' - 1> Pa;(h); (1 - ||A"||> pA;(h)} <e,

which obviously holds also for all A’ € £ suchthat A C A’. O

Proof of Theorem 3.10: The proof will be done if we show that, for every u € Gt
and any van Hove sequence L,

lim piy(h) = p(h).
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By the Jensen inequality one obtains for #1, 1, € R, & € QF,

Za((h + 12)§) = Za(h1§) exp {fz Z Jewma[(we, )3 1hE ]

LeAl'eNe

We set here first t; = 0, t, = 1, then t{ = —t, = 1, and obtain after taking loga-
rithm and dividing by |A|

1
palh) + — Z Jez'ﬂA[(wz,éz')Lf,lo] < pa(h,§)

|A| LeN e

1
= palh)+— Y Jwma[(r, o) 1§], (6.21)
| | LeA e
where we used that 75 [(w, wg/)L§|§] = ma[(wy, -‘;:g/)Lé |£], see (2.54). Thereby, we

integrate (6.21) with respect to u € G', take into account (2.3), and obtain after
some calculations the following

1
pat) = == > Jeema(ledss [0) n(léelss) < PR
| |EeA,Z’eA‘
= pah) + — |A| Z Jee 1t (@, we) 2 ) (6.22)

leAN e

By means of Theorem 3.2 (respectively, Lemma 4.4), one estimates u((w¢, @) 13 ),
w(|&e| L}z@) (respectively, 7w (Jowg| 13 |0)) by positive constants independent of ¢, £'.
Thereby, the property stated follows from (6.7) and Lemma 6.4. O

Proof of Corollary 3.11: By (3.13),

EINOUES DY / TA@U(D)[E) dr.

leA

Then, for every u € G' and A € L, one has

9 3
an P )_/ o7 (PRG, ) p(dg)
BN Z/ /”A [we(T)|E] u(d§)dT

Z 1 [we(1)]de (6.23)
|A|

leA
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By Theorem 3.10, it follows that
i () = i "=(h) (6.24)
an? VTt '

Both extreme measures p. are translation and shift invariant. Then combin-
ing (6.24) and (6.23) one obtains w4 (we(0)) = u_(we(0)) for any 2 # 0. By
Lemma 6.3 this gives the proof. (]

7. PROOF OF THEOREMS 3.12, 3.13

We prove these theorem by comparing the model considered with a certain
model, for which the property desired is being proven directly. The comparison is
based on correlation inequalities, which we present in the next subsections. They
were proven in the framework of the lattice approximation technique, analogous
to that of Euclidean quantum fields. "

Recall that Theorems 3.12—3.14 describe the model with v = 1 and J;p» > 0,
which will tacitly be assumed in the statements below.

7.1. Correlation Inequalities

We begin with the FKG inequality, Theorem 6.1 in Ref. 4. Recall that the
family of functions K, (£2) and Kfryl(Q) were introduced in (3.10) and in the proof
of Lemma 3.6.

Proposition 7.1. Forall A €L, & € Q' and any f, g € K, (), it follows that
(S - gl§) = ma(f1E) - A (glé). (7.1)

This inequality holds also for any continuous increasing functions, for which the
corresponding integrals exist. This yields in particular that for all such functions,

£ <& = ma(/18) < ma(f18). (7.2)

Next, there follow the GKS inequalities, Theorem 6.2 in Ref. 4.

Proposition 7.2. Let the anharmonic potentials have the form
Vi(x) = ve(x®) — hex, hy >0 forall ¢el, (7.3)

with vy being continuous. Let also the continuous functions f1, ..., fuem : R > R
be polynomially bounded and such that every f; is either an odd increasing function
on R or an even positive function, increasing on [0, +00). Then the following
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inequalities hold for all Ty, ..., Tyym € [0, B, and all £, ..., Cyim € A,

/S; <H ft(we,-(fi))> 75 (dw|0) > 0; (7.4)
i=1

n n—+m
| (]‘[ f,«(wm))) : ( 11 fi(we,-(ti))> A (doo]0)

i=1 i=n+1

n n+m
> fi(w,-(fi))>ﬂ (dwl0) - ( fi(wi(fz‘)))” (dw|0). (7.5)
LTt | (TT st

Given £ € Q, A €L, and ¢, ¢/, 7, T’ € [0, B], the pair correlation function
is

K (. 7'18) = /Q ou(D)wp (¢ )a (dolE)

_ / ou(D)TAdol) - / ou(ma@ole).  (7.6)
Q Q
Then, by (7.2),
Kl(t, 7€) > 0, (7.7)

which holds for all £, ¢/, 7, T/, and § € Q'. The following result is a version of the
estimate (12.129), page 254 of Ref. 31, which for the Euclidean Gibbs measures
may be proven by means of the lattice approximation.

Proposition 7.3. Let V; be of the form (7.3) with hy = 0 and the functions v,
being convex. Then for all £, €', T, v’ and for any & € Q' suchthat & > 0, it follows
that

Ki(t, 7€) < K}.(z, T'|0). (7.8)

Let us consider
U (11 0, T3, 74) = / 00, (0 ) (12)eon, (T3 oty (T (de0]0)
Q
— K, (11, 2l0)K 2, (73, 14]0)
— K, (11, BlIO)K L, (12, 74]0)
- Kﬁg4(t1, t4|0)K243 (12, 1310), (7.9
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which is the Ursell function for the measure 4 (-|0). The next statement gives the
Gaussian domination and Lebowitz inequalities, see Ref. 4.

Proposition 7.4. Let Vy be of the form (7.3) with hy = 0 and the functions v,
being convex. Then for all n €N, £y,..., b, e AEL, t1,..., T2, €[0, B], it
follows that

/Q 0, ()00, (12) - 01, (T2 (d0]0)

= ZH/Qwfn(z/'—l)(7"0(2/'*1))“)@"(2,/)(IG(ZJ))EA(dww)’ (7.10)

o j=I1

where the sum runs through the set of all partitions of {1, . .., 2n} onto unordered
pairs. In particular,

Ul nnea(T1. 12, 3, 14) < 0. (7.11)

7.2. More on Extreme Elements

Here we continue to study the properties of u ., the existence of which was
established in Theorem 3.8. In particular, we give an explicit construction of these
measures.

For £y and b > 0, let £ = (£,)4c1 be the following constant (with respect to
7 € Sp) configuration

E¢(v) = [blog(1 + € — &))]"/. (7.12)

Fix o €(0,1/2) and b obeying the condition b > d/\, (see the proof of
Theorem 3.3). In view of (2.38), £ belongs to Q. It also belongs to E({g, b, o),
and for all £ € E(b, 0), one finds A € L such that SZU)(‘L’) < él(j)(t) for all 7, j
and £ € A°. Therefore, for any cofinal sequence £ and & € E(b, o), one finds
A € L such that for all A € £, A C A, one has m5(-|§) < nA(-|§), see (7.2).
As was established in the proof of Theorem 3.1, every sequence {m(:|&)}rcc,
& € E(b,0) C @, is relatively compact in any W, a € Z, which by Lemmas 4.4,
4.5 yields its WW'-relative compactness. For a cofinal sequence L, let i be any of the
accumulating points of {77 (-|)}acz. By Lemma 2.13 /i € G' and by Lemma 5.2
[t dominates every element of ex(G"). Hence, {1 = u. since the maximal element
is unique. The same is true for the remaining accumulation points of {mr A (-|€)}acc;
thus, for every cofinal sequence £ and for every ¢, we have

LENG )= ps. (7.13)
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Remark 7.5. As the configuration (7.12) is constant with respect to T € Sg,

the kernel 7A(-|€) may be considered as the one 7x(:|0) corresponding to the
Hamiltonian with the external field &, that is,

Hpy =) (qe, &), (7.14)

leA

7.3. Reference Models

We shall prove Theorems 3.12, 3.13 by comparing our model with two
reference models, defined as follows. Let J and ¥ be the same as in (3.19) and
(3.20) respectively. For A € L = Z¢, we set (c.f,, (2.2))

1
HY = Z [H™ + V(x)] — 3 Z Jewxexe, x¢ €R, (7.15)

LeA LleA

where H™" is given by (2.21) and €, = 1 if [¢ — ¢'| = 1 and €7 = 0 otherwise.
The second reference model is defined on an arbitrary L satisfying (2.1). For
A €L, we set

. ' 1 -1
]‘[Ap = Z [Hl}]a + v(xf)] — 5 Z Jg(/)(gx;y = Z Hg — 5 Z Jgg/XgX(f,

e Ll e e LleN
(7.16)

where H, is defined by (3.31) and the interaction intensities J;; are the same as in
(2.2). Since both these models are particular cases of the model we consider, their
sets of Euclidean Gibbs measures have the properties established by Theorems 3.1

—3.3. By u!?%, u'P we denote the corresponding extreme elements.

Remark 7.6. The anharmonic potentials of both reference models have the form
(7.3) with the zero external field 4, = 0 and the functions v, being convex. Hence,
they obey the conditions of all the statements of subsection 7.1. By construc-
tion, the /ow-reference model is translation invariant. The up-reference model is
translation invariant if IL is a lattice and Jy, are translation invariant.

In the statements below the comparison with the Jow-reference model relates
to the case of L = Z¢.

Lemma 7.7. For every ¢, it follows that

1 (@0(0)) < pi(@0(0)) < P (@e(0)). (7.17)
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Proof: By (7.13) we have that for any L,

/Qa)g(t),ui(dw) = lizrln/ng(r)nA(daA + &), forallz. (7.18)
Thus, the proof will be done if we show that forall A € L and £ € A,

T (@e(0)[€) < ma(e(0)IE) < 7 (we(0)[E). (7.19)

First we prove the left-hand inequality in (7.19). For given A € L and ¢, s € [0, 1],
we introduce

@y (dwy) = Y(t ( > Jew(we, we)r; + Y (e ny") L/zj

L0eA leA

- / Viodonde +5 3 L — Jeerl @, 00

leA (Z el

> / [Vz(we(f))—V(wz(f))]dT> xa(doy).  (7.20)

LeA

where, see (7.12),

def 2
(1) S Y Jewbe(r)
'eAe
+5 Y [ — Jewlée(t) = Y Jewku(r) >0, (121)
l'eAe t'ele

which in fact is independent of 7, and

Y(t,s):/ exp( Z Jepo(we, wpr) 13 —I—Z a)e nﬁ"s 3
Q4

Ll e LeA

- / Vodonde +3 Y L — Jewed @, 00

lel L’ el
s / [Vewr(r) — V()] dr) xa(don).
leA

Since the site-dependent ‘external field” (7.21) is positive, the moments of the
measure (7.20) obey the GKS inequalities. Therefore, for any £ € A, the function

Bt 5) = ww(0), .5 €0, 1], (7.22)
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is continuous and increasing in both variables. Indeed, taking into account (3.19),
(3.20), and (3.23), we get

aa_s(p(t, S) = Z [JZZ’ - Jégg/]égr(o)

el

B
x /0 {@) [0 Owe ()] = @ [we(0)] - @y oo ()] Jdr
1

+ = Z [Jlliz - Jeél@z]{w[(\t“?)[wl(o)(wll s wlz)L%]
[1.526/\

— oo 0)] - w00 ]} 2 0,

d p t,s
G5 = 3 [ {00 [V@r(e) = Fe(oro)])

veA
— o V[0d0)] - o[V (@0(1) = Ve(we(t)]}dr = 0.
But by (7.20) and (7.22)
$(0,0) = 1™ (@(0)),  B(1, 1) = 7wA(@e(0)),
which proves the left-hand inequality in (7.19). To prove the right-hand one we

have to take the measure (7.20) with s = 1 and v(xf) instead of V' (x,) and repeat
the above steps taking into account (3.30). O

In the next statement we summarize the properties of the reference models.

Corollary 7.8. (Comparison Criterion) The model considered undergoes a phase
transition if the low-reference model does so. The uniqueness of tempered Eu-
clidean Gibbs measures of the up-reference model implies that |G'| = 1.

Proof: The proof follows immediately from (7.17) and Lemma 6.3. |
7.4. Estimates for Pair Correlation Functions
ForAC A, ¢, e A,t,7' €[0,B],and ¢ € [0, 1], we set

M. T, 1) = /Q w)ou () ([doy). (7.23)
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where this time we have denoted

0 1
AN = 3

1
exply D Junlon, o)
01, 0,eA\A

1
+1 Z Z Joe (@0, 06)z + 5 Z Jeey (@0, 01,)13

£1€A lzéA\A [1,[2€A

B
-3 [ vty dr} xa(doon),

LeA

1
YA,A(t) =/ €Xp 5 Z Jflfz(wﬁl’wﬁz)Lé
Qa

£1,6,€A\A

1
+t Z Z Jéllz(a)lwwlz)Lé—'—E Z JZléz(a)llva)éz)Lé

€1EA [2€A\A Z1,[2€A

B
- ¥ [ vy dr} xa(don). (7.24)

LeA

By literal repetition of the arguments used for proving Lemma 7.7 one proves the
following

Proposition 7.9.  The above Q%,,(z, T'| A, t) is an increasing continuous function
of t € [0, 1].

Corollary 7.10. Let the conditions of Proposition 7.2 be satisfied. Then for any
pair A C N € L and for all T and ¢, the functions (7.2) obey the estimate
KA (z,7'|0) < Kf(z, T'10), (7.25)

which holds for all £, ¢’ € A and t, 7" € [0, B].

Now we obtain bounds for the correlation functions of the reference models for a
one-point A = {£}. Set

KP(r, ) = 1 (@(@)or(m)0),  K(T,7) = 1™ (@u(@)w(x)]0),  (7.26)

We recall that the parameter A was defined by (3.32).
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Lemma 7.11. For every B, it follows that

d

B
k» /0 K®(t,7")dt < 1/mA>. (7.27)

Proof: In view of (2.14) the above integral is independent of 7. By (2.13) and
(2.15)
u 1 B - N N -
K" = Z_/ trace{xce”"Mix,e” PO dr,  Z, = trace[e ], (7.28)
¢ Jo

where the Hamiltonian H was defined in (3.31). Its spectrum { £, },cn determines
by (3.32) the parameter A. Integrating in (7.28) we get

wp _ | 2 (Ey — Ey)(e PEr — e PEn
K[p = = Z |('(//n,xgwn')L2(R)| >
ZE n,n'eNy, n#n' (En - En’)
1 1 5 . B
=z Z (W, XeV)12wy|” (En — En)(e PE — e FEr)
Z@ A n,n'eNy
- -trace([xe, [, xeJle Py = — (7.29)
= — . —trace{[x¢, [He, x¢]]e — ’ _
Az, ¢ [He, xe —3

where 1, n € Ny are the eigenfunctions of A, and [-, -] stands for commutator.
O

For the functions K é"w, a representation like (7.28) is obtained by means of the
following Hamiltonian

\ 19\ a
Ho=H™+V(x)=——(— ) +2x? :
[ P+ YV (xe) o (an) + 5% + Vi(xe), (7.30)

where m and a are the same as in (3.31) but V' is given by (3.20). Thereby,

KéOW(O, 0) = trace[x@2 exp(—ﬂI:Ie)]/trace[exp(—ﬂl:lg)] «f o(x?). (7.31)

Lemma 7.12. Let t, be the solution of (3.22). Then Ké"w(O, 0) > t,.

Proof: By Bogoliubov’s inequality (see e.g., Ref. 81), it follows that

A ~ 0
0c([pe. [He, pell) 20, pe = _V_la_xg’
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which by (3.20), (3.21) yields

a+26" + 2525 — DbIg[x; Y]
s=2

=a+26" + ) 2525 — BT [(@0(0))** "] = 0.
s=2

Now we use the Gaussian domination inequality (7.10) and obtain K é"w >t,. O

7.5. Periodic States and Proof of Theorem 3.12

In view of Corollary 7.8 to prove Theorem 3.12 we show that
1 (@(0)) > 0, (7.32)

if the conditions of Theorem 3.12 are satisfied. To this end we employ the trans-
lation invariance and reflection positivity of the /ow-reference model. With this
connection we construct periodic Euclidean Gibbs states by introducing (c.f.,
(2.30))

r J ?
I (wp) = -5 > €l (g, 0p)p +Z/0 V (we(7))dr, (7.33)
LUen LeA
where
A=(-L, L) ﬂ]L, LeN, (7.34)
and e}, = 1if |€ — €|, = | and €/}, = 0 otherwise. Here
€= €a =110 = 617 + -+ 18 — 412172,
|Zj—£;|L=min{|£j—£;|;L—|£j—£}|}, j=1,...,d.
Clearly, /5" is invariant with respect to the translations of the torus which one

obtains by identifying the opposite walls of the box (7.34). The energy functional
1Y corresponds to the following periodic Hamiltonian

J
HY = [P+ Vo] = 5 D efyexe, (7.35)
teA LL'eA

in the same sense as I, given by (2.30) corresponds to H, given by (2.2). Now
we introduce the periodic kernels (c.f., (2.54))

cr 1 cr
73 (do) = —i exp [~ I3 (@n)] xa(don) [ 8@en),  (736)
A LeAe
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where § is the Dirac measure concentrated at w, = 0 and
= / exp [ 11" (wa)] xa(dwy).
Q4

Thereby, for every box A, the above 7} is a probability measure on Q. By Lpox
we denote the sequence of boxes (7.34) indexed by L € N. For a given « € Z, let
us choose ¥, » > 0 such that the estimate (4.13) holds.

Lemma 7.13. Foreverybox A, a € T, and o € (0, 1/2), the measure & obeys
the estimate

/ oI, 7 (dw) < Cr17. (737)
Q

Thereby, the sequence {mt}" } aer,,, is W'-relatively compact.

Proof: For £ € A suchthat (¢’ eL | [£ —¢| =1} C A, weset A, =1L\ {£}.
Then let v/ be the projection of 7} onto B(R24,). Let also vy(-[€), & € Q be the
following probability measure on the single-spin space ¢y = Cp

1 B
ve(dwel§) = N @) exp {J ZZ €@, §)p3 — /0 V(o)) dT} x(dwy).
(7.38)
Then (c.f., (2.56)) desintegrating & we get
Trf\er(da)) = v@(da)g|a)Al)vé\(da)A(). (7.39)

Like in Lemma 4.1 and Corollary 4.2 one proves that the measure v,(-|£) obeys

/ exp {)»a|we|2cg + %Iwgli%}w(da)gla)m) <exp {C4.1 + ﬁJZEuﬂwz'ﬁ%} ,
Cp v

where A, x, and ¥ are as in (4.1), (4.4). Now we integrate both sides of this
inequality with respect to v/* and get, c.f., (4.12), (4.13)

ni(A) £ log { / exp [Ao lwely + el ]nﬁer(dw)} < Car.
Q

Then the estimate (7.37) is obtained in the same way as (4.16) was proven. The
relative W,-compactness of {7y }aer,,, follows from (7.37) and the compactness
of the embeddings Q,, <> Qu, @ < &’. The W'-compactness is a consequence
of Lemma 4.5. O

Lemma 7.14.  Every W'-accumulation point uP* of the sequence {m}" } s Loer IS
a Euclidean Gibbs measure of the low-reference model.
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Proof: Let £ C Ly be the subsequence along which {n}" }sc. converges to
P € P(22Y). Then {v}}ac converges to the projection of P on B(Q24,). Em-
ploying the Feller property (Lemma 2.10) we pass in (7.39) to the limit along
this £ and apply both its sides to a function f € C,(2"). This yields that uP°" has
the same one-point conditional distributions as the Euclidean Gibbs measures of
the reference model. But according to Theorem 1.33 of Ref. 36, page 23, every
Gibbs measure is uniquely defined by its conditional distributions corresponding
to one-point sets A = {¢} only. i

Now we are at a position to prove that (7.32) holds if 8 > B,. Given a box
A, we introduce

B
m(ﬂ)=/ﬁ‘ﬁ2/o we(r)dr

LeA

2
7P (dw). (7.40)

For any ¢, one can take the box A such that the Euclidean distance from this £ to
A° be greater than 1. Then by Corollary 7.10 and Lemma 7.12 one gets

/ [we(0)* 7Y (dw) > K°¥(0, 0) > .. (7.41)
Q

The infrared estimates based on the reflection positivity of the low-reference
model, together with the Bruch-Falk inequality® and the estimate (7.41), lead to
the following bound

Pp(B) = t,. f(B/4mt,) — 0a/2B . (7.42)

which holds for any box A. By means of the Griffiths theorem, see Ref. 29,
Theorem 1.1 and the corollaries, one can prove that

pP(we(0)) = limsup v/ Po(B). (7.43)

per

Therefore, the estimate (7.32) holds if the right-hand side of (7.43) is positive,
which can be ensured by taking 8 > B, see (3.26) and (3.27), (3.28).

7.6. Proof of Theorem 3.13

Now we make precise the parameter § participating in the condition (2.40).
In what follows, we set § = m A%, where the parameter A was defined by (3.32).
Then

Jo < Jy < mAZ. (7.44)

6 See Theorem VI1.7.5, page 392 of Ref. 81 or Theorem 3.1 in Ref. 29
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Let us consider the examples following Assumption 2.5. If Jy obeys (2.41), the
values of @ in question exist in view of

lim J, = Jo, (7.45)

which readily follows from (2.41), (2.42). If the weights are chosen as in (2.44),
one can use ¢ to ensure (7.44). Indeed, simple calculations yield

0< fo(f) — jo < eoedjosl),

where to indicate the dependence of ja on & we write jo(f) . Thereby, we fix @ € 7
and choose ¢ to obey ¢ < mAz/adjo(tl).

Now let us turn to the proof of Theorem 3.13. By Corollary 7.8 it is enough
to prove the uniqueness for the up-reference model, which by Lemma 6.3 is
equivalent to

1P (00(0)) =0, forall >0 and €. (7.46)

Given A € L, we introduce the matrix (7);,¢er. as follows. We set 7,5, = 0 if
either of ¢, ¢’ belongs to A¢. For £, ¢ € A,

Th = Ju, / 7 [we, (D)we(z') 0] de (7.47)

lieA

By (2.14) the above integral is independent of .

Lemma 7.15. [f(3.33) is satisfied, there exists o € L, such that for every A € L,
the matrix (TZ},)&(/G]L defines a bounded operator in the Banach space [°°(wy,).

Proof: The proof will be based on a generalization of the method used in Ref. 5
for proving Lemma 4.7. For 7 € [0, 1], let =\’ € ’P(QA)) be defined by (7.24)
with A = A and each Vy(w,(t)) replaced by U([Cz)g(l’)] ), where v is the same as
in (3.31). Then by (7.16)

wy = []7PC10). @ =a(10). forany A €L. (7.48)
LeA

Thereby, we set
B
THWO =Y Ju, /O @\ [0 (Dwe()]d’ 1 €[0,1]. (7.49)
£

One can show that for every fixed ¢, £', the above Tg‘}(t) is differentiable on the
interval ¢ € (0, 1) and continuous at its endpoints, where (see (7.27))

TH(0) = Juw K" < Juw/mA?, Tp() = Tj. (7.50)
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Computing the derivative we get

3 1 Borf ) )
5T,fg,(t)zz > JMJ,ZZ,ZB/O /O Uyt 7.7/ 1 ) de’dny (7.51)
£1,62,45

+ Z 713/21 (f)Tejl\e/(t)»
41

where U, E’}, "’ ez(t’ 7, T/, 11, 11) is the Ursell function which obeys the estimate (7.11)
since the function v is convex. Hence, except for the trivial case Jyp = 0, the first
term in (7.51) is strictly negative. Let us consider the following Cauchy problem

d ,
8—14@(3/0) = ZLeel(f)Lele’(f), Lop(0) =AJpe, £, £ €L, (7.52)
t 7

where A € (1/mA?2, l/ja), with & € Z chosen to obey (7.44). For such «, one can
solve the problem (7.52) in the space /°°(w,) (see Remark 2.6) and obtain

Ay
Lt)y=AJ [T —aJ1 L)y < ———. 7.53
®) (Ol (we) Tl (7.53)

where [ is the identity operator. Now let us compare (7.51) and (7.52) consider-
ing the former expression as a differential equation subject to the initial condi-
tion (7.50). Since the first term in (7.51) is negative, one can apply Theorem V,
page 65 of Ref. 88 and obtain 7}, < L¢(1), which in view of (7.53) yields the
proof. i

Proof of Theorem 3.13: For ¢, {3, A € L, suchthat £ € A,and ¢ € [0, 1], we set
a0 = [ o dolre™) (7.54)
Q

where £% is the same as in (7.12). The function r, is obviously differentiable on
the interval ¢ € (—1, 1) and continuous at its endpoints. Then

0 < ¢a(l) < sup Yy(t). (7.55)
tel0,1]
The derivative is
B
no= Y / 7P [0, 0 (1) 169 e, (756)
LieA, LreAe 0

where the ‘external field’ ny = [blog(1 + |¢' — €o|)]1/ % s positive at each site.
Thus, we may use (7.8) and obtain

YA < Y Thme. (7.57)

l'e ¢
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By Assumption 2.5 (b), n € I°°(w,) with any o > 0, then employing Lemma 7.15,
the estimate (7.53) in particular, we conclude that the right-hand side of (7.57)
tends to zero as A ' L, which by (7.18) and (7.54), (7.55) yields (7.46). O

8. UNIQUENESS AT NONZERO EXTERNAL FIELD

In statistical mechanics phase transitions may be associated with nonana-
lyticity of thermodynamic characteristics considered as functions of the external
field /. In special cases one can oversee at which values of 4 this nonanaliticity can
occur. The Lee-Yang theorem states that the only such value is # = 0; hence, no
phase transitions can occur at nonzero /. In the theory of classical lattice models
these arguments were applied in Refs. 60—-62. We refer also to sections 4.5, 4.6 in
Ref. 37 and sections IX.3-IX.5 in Ref. 79 where applications of such arguments
in quantum field theory and classical statistical mechanics are discussed.

In the case of lattice models with the single-spin space R the validity of
the Lee-Yang theorem depends on the properties of the anharmonic potentials.
For the polynomials ¥ (x) = x* + ax?, a € R, the Lee-Yang theorem holds, see
e.g., Theorem IX.15 on page 342 in Ref. 79. But no other examples of this kind
were known, see the discussion on page 71 in Ref. 37. Below we give a sufficient
condition for the potentials V' to have the corresponding property and discuss
some examples. Here we use the family F1 4gyerre defined by (3.35). We also prove
anumber of lemmas, which allow us to apply the arguments based on the Lee-Yang
theorem to our quantum model and hence to prove Theorem 3.14.

Recall that the elements of Fiaguerre can be continued to entire functions
¢ : C — C, which have no zeros outside of (—o0, 0].

Definition 8.1. A probability measure v on the real line is said to have the Lee-
Yang property if there exists ¢ € Fraguerre Such that

/R exp(y(dy) = p(x2).

In Ref. 52, see also Theorem 2.3 in Ref. 56, the following fact was proven.

Proposition 8.2. Let the function u : R — R be such that for a certain b > 0,
its derivative obeys the condition b + u' € Fiaguerre. Then the probability measure

v(dy) = Cexp[—u(y*)]dy, (8.1)

has the Lee-Yang property.

This statement gives a sufficient condition, the lack of which was mentioned
on page 71 of Ref. 37. The example of a polynomial given there for which the



Euclidean Gibbs Measures of Interacting Quantum Anharmonic Oscillators 1043

corresponding classical models undergo phase transitions at nonzero 4, in our
notations is u(t) = 13 — 2t + (« + 1)t, @ > 0. It certainly does not meet the
condition of Proposition 8.2. Turning to the model described by Theorem 3.14 we
note that, for v(¢) = 3 + b@1? 4 V¢, the function u(t) = v(t) + at /2 obeys the
conditions of Proposition 8.2 if and only if 5® > 0 and bV 4 a/2 < [p?]?/3.
Therefore, according to Theorem 3.14 we have |G| = 1 at & # 0 and 26"V +a <
0, » > 0. On the other hand, for this model, by Theorem 3.12 one has a phase
transition at # = 0 and the same coefficients of v.
Set

Fn?) = fR exp [ hY x+ 3 Myxixy | [[vidx), heR  (82)
! i=1 i=1

ij=1

By Theorem 3.2 of Ref. 63, we have the following

Proposition 8.3.  Ifin (8.2) M;; > 0 foralli, j =1, ..., n, and the measure v is
as in Proposition 8.2, then the function f, if exists, belongs to Fiaguerre. It certainly
exists if u’ is not constant.

Now let the potential ' obey the conditions of Theorem 3.14. Recall that p, (%)
stands for the pressure (3.13) with & = 0. Define

oa(h?) = pa(h), h eR. (8.3)

Lemma8.4. If'V obeys the conditions of Theorem 3.14, the function exp (| Al@a)
belongs to Fiaguerre-

Proof: With the help of the lattice approximation technique the function
exp (JAlpa) may be approximated by fy, N € N, having the form (8.2) with
the measures v having the form (8.1) with u(t) = v(¢t) +at/2, v is as in
(3.36), and non-negative M;; (see Theorem 5.2 in Ref. 4). For every h € R,
Sn(h?) — exp (IAlpa(h?)) as N — +o0. The entire functions fy are ridge, with
the ridge being [0, +00). For sequences of such functions, their point-wise con-
vergence on the ridge implies via the Vitali theorem (see e.g., Ref. 79) the uniform
convergence on compact subsets of C, which yields the property stated (for more
details, see Refs. 53, 57). 0O

Proof of Theorem 3.14: By Lemma 8.4, for every A € LL, p,(h) can be extended
to a function of 4 € C, holomorphic in the right and left open half-planes. By
standard arguments, see e.g., Lemma 39, page 34 of Ref. 53, and Lemma 6.4 it
follows that the limit of such extensions p(%) is holomorphic in certain subsets
of those half-planes containing the real line, except possibly for the point 4 = 0.
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Therefore, p(h) is differentiable at each & # 0. Then the proof of the theorem
follows from Corollary 3.11. O
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